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Abstract 

This thesis aimed to investigate the fluid dynamics conditions in a 

coaxial injection mixer and to examine their impact on the resulting 

nanoparticles (liposomes). The objectives of the study were achieved 

through a series of experimental steps. Initially, the fluid dynamics 

conditions described by Lim et al. (2014) were replicated using a 

coaxial turbulent jet mixer. The mixing performance was studied by 

conducting an acid-base neutralization reaction, with the presence of an 

indicator, at several fluid dynamics regimes. From these experiments 

and through image analysis it was possible to calculate the mixing time 

from the measurement of the mixing length and from the knowledge of 

the total flow rate. 

The mixing performance was also evaluated using the Villermaux-

Dushman reaction (competitive consecutive reaction system). A linear 

relationship between the segregation index (Xs) calculated from the 

reaction yield and the mixing time was observed. These results allowed 

to confirm the goodness of the results obtained from the acid-base 

neutralization reaction and confirmed the importance of the 

micromixing phenomenon in this application.  

Such a characterized system was used to produce liposomes containing 

a model drug (vitamin D3) at different flow rates and 

phosphatidylcholine concentrations. Moving from laminar to turbulent 

production conditions resulted in a significant decrease in the size of 

liposomes, maintaining high encapsulation efficiency. This 

demonstrated that the formation of liposome through nanoprecipitation 

is governed by the mixing time between the solvent and the antisolvent, 

which should be as fast as possible (micromixing time scale) to achieve 

narrow and low particle size distribution.   



 

 [79] 

Chapter Four 

Conclusions 

In this chapter the conclusions of the 

work described in the previous chapter 

are summarized. 
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In conclusion, this thesis aimed to investigate and examine the influence 

of fluid dynamics conditions in a coaxial injection mixer on the 

characterization of liposomes. The objectives of the study were 

successfully achieved through a series of experimental steps. 

Initially, the fluid dynamics conditions described in the study by Lim et 

al. (2014) were replicated using the coaxial turbulent jet mixer. By 

conducting an acid-base neutralization reaction and analysing the 

resulting flow behaviour zones, the accuracy of the coaxial injection 

mixing was verified. The experimental observations demonstrated a 

close correspondence between the results obtained with different needle 

sizes. 

The mixing time, was calculated based on video analysis, using the 

measured mixing length (L) at the point of complete neutralization of 

the acid-base reaction. Indeed, the experimental results presented in the 

study demonstrated that the EDD model can effectively estimate the 

mixing time when the coaxial turbulent jet mixer is operated in the 

turbulent jet regime.  

Furthermore, the study utilized the ε parameter from the EDD model, 

which represents the average turbulent kinetic energy dissipation, to 

calculate the τω parameter. The ratio between τmix and τω was found to 

be approximately one, regardless of the FVR and Reynolds number 

(NRe), indicating that the mixing time can be estimated accurately 

using the EDD model in the turbulent jet regime. 

The mixing performance was evaluated using the Villermaux-Dushman 

reaction, and the segregation index (Xs) was measured for different 

concentrations of reagents. The results indicated that in the turbulent 

regime, the system approached almost a perfectly mixed state, where 

the common reagent was fully consumed by the quasi-instantaneous 

reaction. Additionally, a linear relationship between Xs and the mixing 

time (τmix) was observed, allowing for the quantification of 

micromixing independent of the chemical reaction. 

Lastly, the impact of flow rates and phosphatidylcholine concentrations 

on the characteristics of liposomes was assessed. The study revealed 

that when moving from laminar to turbulent production conditions, 

there was a notable decrease in the size of liposomes. This transition led 

to the production of smaller liposomes under turbulent conditions. This 

finding highlights the importance of fluid dynamics conditions in 

controlling the size and properties of liposomes during their production 
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process. This evidence was confirmed by evaluating the encapsulation 

efficiency, turbidity, z-average, load and numeric, volumetric, and 

intensity distribution, for different concentrations of extracted 

phosphatidylcholine. 

Overall, this thesis successfully investigated the influence of fluid 

dynamics conditions on the resulting production of liposomes. The 

findings contribute to the understanding of the relationship between 

mixing conditions and liposome characteristics, offering insights for the 

optimization of liposome (and nanoparticles) production processes in 

coaxial-injection mixers.
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