

UNIVERSITÀ DEGLI STUDI DI SALERNO

Department of Industrial Engineering Master's Degree Course in Food Engineering

Analysis of the impact of fluid dynamics conditions on nanoparticles production process

Thesis in Transport Phenomena

Supervisors:

Candidate:

Prof. Eng. Gaetano LambertiMarica Della Vecchia Dr. Eng. Diego Caccavo number 0622800553

2020/2021

Ever tried. Ever failed. No matter. Try again. Fail again. Fail better.

Samuel Beckett

This text is privately printed, in Times New Roman The planned data for the discussion of the thesis is 23 May 2022

Fisciano, 11th May2022

Table of contents

Table of contents	I	
Figure Index	V	
Table Index	VIII	
Abstract	X	
Introduction	12	
1.1.13		
1.1.1 Generality	13	
1.1.2 Vesicles' Classification	15	
1.1.3 Advantages in the use of	f liposomes	16
1.1.4 Main fields of application	on of liposomes	17
1.2 Conventional method for	liposomes' production	17
1.2.1 The Bangham method	17	
1.2.2 Detergent depletion method18		
1.2.3 The injection method	18	
1.2.4 Reverse phase evaporati	on method (RPE)	19
1.2.5 The emulsion method	20	
1.3 Innovative methods for the	ne liposomes' production	22
1.3.1 Supercritical Anti-solve	nt Method (SAS)	22
1.3.2 Supercritical Reverse Ph	nase Evaporation Method (scRPE)	23
1.3.3 Double emulsion for fre	eze drying	24

Page 2	Effect of fluid dynamics or	liposome production	M. Della Vecchia
	1.3.4 Microfluidic production n	nethod	25
	1.3.5 Microfluidic-like production technique		28
1.4 Examples from the literature of the use of the microfluidic-like technique31			
1.5	Aims	32	
Mate	erials and methods	35	
2.1	Materials	36	
	2.1.1 Zinc nitrate hexahydrate	36	
	2.1.2 Disodium hydrogen phosp	phate anhydrous	36
	2.1.3 Soya L- α phosphatidylch	oline (PC)	37
	2.1.4 Solvents	37	
2.2	Equipment	38	
	2.2.1 Experimental set-up for li	posome production	38
	2.2.2 Centrifuge	42	
	2.2.3 Sonication Process	42	
	2.2.4 Dynamic Light Scattering	(DLS)	43
	2.2.5 Nano Zetasizer	44	
	2.2.5 Optical microscope	45	
2.3	Methods	47	
	2.3.1 Fluid dynamics analysis	47	
2.3.2 Preparation of zinc ZnA NPs		47	
	2.3.3 Preparation of liposomes	50	
2.4	50		
	2.4.1 MATLAB®	51	
	2.4.2 COMSOL Multiphysics®	software	54
	2.4.2.1	53	
	2.4.2.2	55	
	2.4.2.3	56	
	2.4.2.4	57	
	2.4.2.5	60	

2.4.2.6	60	
2.4.2.7	61	
2.5 Optical microscope image	analysis	66
2.5.1 MATLAB®	68	
2.5.1.1 Distribution functions [3	39]	71
Results and discussion	77	
3.1 Analysis method	78	
3.2 ZnP NPS characterization	90	
3.2.1 Literature formulation of 2	ZnP NPs	90
3.3 Liposomes Characterizatio	on92	
3.3.1 Nano Zetasizer analysis	95	
3.3.2 Optical microscope analys	sis of liposomes	96
Conclusions	100	
4.1 Conclusions of the project	101	

References 103

Figure Index

Figure 1 - <i>Chemical structure of a pi</i> (<i>b</i>)	hospholipid (a). Scheme of a phospho 14	olipid
Figure 2 - Geometries of lipid molec	ules and possible configurations	15
Figure 3 - Classification of liposome	s on the basis of size [3].	16
Figure 4 - General diagram of the sta liposomes using the emulsion technic	eps necessary for the formation of que 20	
Figure 5 - Simplified representation [18]	of the apparatus used in the SAS meta 23	hod
Figure 6 - <i>Simplified representation</i> [18]	of the apparatus used in the scRPE n 24	nethod
Figure 7 - Schematic of the double en	mulsion method for lyophilization	25
Figure 8 - Scheme of the microfluidid liposomes [21]	c method for the controlled formation 26	n of
Figure 9 - Representative diagram of of Liposomes [30]	f the experimental set up for the prod 28	uction
Figure 10 - Schematic illustration of throughput synthesis of NPs. Schema mixer with (a) turbulence induced by jetting	the coaxial turbulent jet mixer for hi atic illustration of the coaxial turbule vortex and (b) turbulence induced b 31	gh- nt jet y
Figure 11 - Schematic illustrations a and turbulence, and turbulent jet	nd top views of fluid flow at laminar, 32	vortex
Figure 12 - Phase diagram of jet flow	v regime in terms of R and Re	32

Figure 13 - Chemical structure of zinc nitrate (a). Zinc nitrate appearance atroom temperature (b)36	
Figure 14 - Chemical structure of disodium hydrogen phosphate anhydrous (a Disodium hydrogen phosphate appearance at room temperature (b)	:). 36
Figure 15 - Structure of soy L-a-phosphatidylcholine	37
Figure 16 - L-a-phosphatidylcholine appearance as powder	37
Figure 17 - Production plant with microfluidic-like technique	38
Figure 18 - Section of the BD Quincke Spinal Needle (a). BD Quincke SpinalNeedle Parameters (b)39	
Figure 19 - Details of the coaxial turbulent jet mixer	39
Figure 20 - 3D view of the push and pull syringe pump	40
Figure 21 - Schematization of the piping 40	
Figure 22 - ELP-USB4K03-SFV 4K Ultra HD USB camera	41
Figure 23 - Neya 16 High Speed Ultracentrifuge (a). Rotor (b)	42
Figure 24 - VCX 130 PB 130 W, 20 kHz, Sonics & Materials Inc, Laboratory sonicator43	
Figure 25 - Schematic of the functioning of the DLS	44
Figure 26 - Nano Zetasizer by Malvern Instrument LTD (a). Folded Capillary Cell (b) 45	
Figure 27 - Leica DMLP Polarizing Light Microscope: front view (a), side vie (b) 46	'W
Figure 28 - Dripping the disodium hydrogen phosphate solution into the beak containing the zinc nitrate hexahydrate solution	er 48
Figure 29 - White precipitate after stirring for 2 hours	49
Figure 30 - Example of the parameter set in COMSOL Water/ethanol mixture(1:2), Re 840, FVR 557	
Figure 31 - Density of the water/ethanol binary system at 25 $^{\circ}$ C	58
Figure 32 - Viscosity of the water/ethanol binary system at 25 $^{\circ}$ C	59
Figure 33 - Water diffusivity at $25^{\circ}C$ 60	
Figure 34 - <i>Ethanol diffusivity at</i> $25^{\circ}C$ 60	
Figure 35 - 2D-axisymmetric geometry of the coaxial turbulent jet mixer	61
Figure 36 - Boundary condition62	
Figure 37 - Condition on the walls63	
Figure 38 - Inlet of the solution into the outer tube	64
Figure 39 - Inlet of the solution through injection	65

66	
<i>ignification</i>	67
raticules LTD (a). 2mm vertical scale 67	ę
on function	72
on	73
tive mass and numerical distribution	74
nd numerical density distribution	75
VR and Re, for water/ethanol 1:2 81	
VR=7,5; Re=840. (a) Output of the output of the code implemented in 82	
/R=5; Re=840. (a) Output of the coa ut of the code implemented in 83	le
VR and Re, for water/ethanol pure 89	
VR and Re, for water/water pure 89	
ation for the ZnP NPs	91
ation for the liposomes	93
or liposomes	94
nar regime	96
lent regime	96
Distribution (a). Cumulative Function 98	n
Distribution (a). Cumulative Function 99	on
	66 gnification raticules LTD (a). 2mm vertical scale 67 on function on tive mass and numerical distribution id numerical density distribution VR and Re, for water/ethanol 1:2 81 /R=7,5; Re=840. (a) Output of the output of the code implemented in 82 /R=5; Re=840. (a) Output of the code ut of the code implemented in 83 VR and Re, for water/ethanol pure 89 VR and Re, for water/water pure 89 Ation for the ZnP NPs ation for the liposomes or liposomes mar regime lent regime Distribution (a). Cumulative Function 98

Table Index

Table 1 - Size and lamellarity classification	tion of liposomes	16
Table 2 - Advantages for Large Scale PLiposome Formation Methods	roduction using the Major Convention 21	nal
Table 3 - Disadvantages for Large ScaleConventional Liposome Formation Met	e Production using the Major hods	21
Table 4 - The innovative elements and the production technique	he advantages of the Microfluidic-like 29	9
Table 5 - Advantages for Large Scale PLiposome Formation Methods	roduction using the Major Innovative 30	
Table 6 - Disadvantages for Large Scale Liposome Formation Methods	e Production using the Major Innova 30	tive
Table 7 - Production parameters of ZnA	NPs in the coaxial turbulent jet mixe 49	?r
Table 8 - Production parameters of lipo	somes in the coaxial turbulent jet mix 51	ær
Table 9 - Parameters of the k-ε model	56	
Table 10 - Summary of simulation result volume	ts for the water/ethanol mixture 1: 2 i 78	Ьу
Table 11 - Summary of simulation result	ts for the pure water/ethanol	84
Table 12 - Summary of simulation result	ts for the pure water/water	86
Table 13 - Recipe for the preparation of	zinc nitrate solution	90

Table 14 - Recipe for the preparation of disodium hydrogen phosphate solution90	ion
Table 15 - Zaverage of nanoparticles in the three production modes	90
Table 16 - d50volumetric of nanoparticles in the three production modes	91
Table 17 - Recipe for the preparation of liposomal solution	92
Table 18 - Zaverage of liposomes in the two production modes	92
Table 19 - d50volumetric of liposomes in the two production modes	92
Table 20 - Nano Zetasizer results95	

Abstract

Liposomes - small spherical vesicles with dimensions ranging from 25 nm to 1 μ m in diameter - generally consist of a double layer of natural non-toxic phospholipids or cholesterol. Due to their size and amphipathic character, as well as their biocompatibility, liposomes are promising systems for drug delivery. The properties of liposomes differ greatly with their lipid composition, surface charge, size and method of preparation.

In this thesis work the effect of fluid dynamics conditions in the simil-microfluidic production method of nanoparticles is investigated. In this method a stream is injected in a second one in a co-current configuration. At the interface of the two nanoparticles should be formed. Since this approach is based on the microfluidic findings, the standard operative conditions set the flow rates of the two fluids on a value that assure laminar conditions. However, the finding of *Lim et al., ACS Nano (2014)* suggested that turbulent fluid dynamic conditions could improve the quality of the produced nanoparticles, reducing their size.

In this work the fluid dynamic behavior of the water/ethanol mixture with a ratio of 1:2 by volume in both streams, as well as the behavior of pure ethanol (injected stream) and water and the pure water/water. Fluid dynamics was observed through the use of a tracer and a camera. Videos were recorded and analyzed through the use of MATLAB®. This made it possible to obtain important information concerning the regimes of motions obtained as a function of the Reynolds number N_{Re} and the ratio of the velocities *FVR*.

Thanks to the data collected from the fluid dynamics analysis and taking into account the properties of the formulations - density and viscosity and the design parameters of the equipment, it was possible to implement a model capable of providing information on the process on COMSOL Multiphysics[®] Software. The fluid dynamics trend on COMSOL[®] software was obtained using a turbulent *k*- ε *RANS model*. Once the information on the production phase was obtained, the production of nanoparticles of zinc phosphate and liposomes were carried out. The characterization of the samples produced was carried out using the DLS: as regards the liposomal productions, the characterization also took into account the analysis of the samples with the Nano Zetasizer and the optical microscope.

So, summarizing, in this thesis work the effect of fluid dynamics in the production process of zinc nanoparticles was analyzed, then implementing the results obtained for the production of liposomes through the use of a microfluidic-like technique. The results obtained determined the presence of a decrease in the average size of the nanoparticles obtained, passing from a laminar regime to a turbulent one.

References

- 1. Bochicchio S., "Nanostructured vectors for the transport of active molecules through biological membranes for pharmaceutical and nutraceutical applications", PhD in Industrial Engineering at University of Salerno, (2014)
- 2. Recupido F., "*Produzioni di nanoliposomi per applicazioni nutraceutiche mediante un approccio simil-microfluidico*", Tesi di laurea in Ingegneria Chimica, Università degli Studi di Salerno, (2016).
- 3. Dirk van Swaay, Andrew deMello. "Microfluidic methods for forming liposomes". Lab Chip, 2013, 13, 752.
- 4. Akbarzadeh, A., et al., *Liposome: classification, preparation, and applications.* Nanoscale research letters, 2013. 8(1): p. 1-9.
- 5. Reza Mozafari M., et al., "Nanoliposomes and Their Applications in Food Nanotechnology", Journal of Liposomes Research, 18 309-327 (2008)
- 6. R. C. C. New. Preparation of liposomes. In R. C. C. New (ed.), "*Liposomes: A practical approach*", Oxford University Press, New York, 1990, p. 33–104.
- 7. M. R. Mozafari. "Liposomes: An overview of manufacturing techniques". Cell. Mol. Biol. Lett. **10**(4):711–719 (2005).
- 8. A. D. Bangham, M. M. Standish, and G. Weissmann. "The action of steroids and streptolysin S on the permeability of phospholipid structures to cations". J. Mol. Biol. **13**(1):253–259 (1965).
- 9. J. Brunner, P. Skrabal, and H. Hauser. "Single bilayer vesicles prepared without sonication. Physico-chemical properties". Biochim. Biophys. Acta. **455**(2):322–331 (1976).
- 10. Jaafar-Maalej, C.; Diab, R.; Andrieu, V.; Elaissari, A.; Fessi, H. "Ethanol injection method for hydrophilic and lipophilic drug-

loaded liposome preparation". J. Liposome Res. **2010**, 20, 228–243.

- 11. Batzri, S. and E.D. Korn, *Single bilayer liposomes prepared without sonication*. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1973. **298**(4): p. 1015-1019.
- Deamer, D. and A. Bangham, *Large volume liposomes by an ether vaporization method*. Biochimica et Biophysica Acta (BBA)-Nucleic Acids and Protein Synthesis, 1976. 443(3): p. 629-634.
- 13. Deamer, D.W., *Preparation and properties of ether-injection liposomes*. Annals of the New York Academy of Sciences, 1978. **308**(1): p. 250-258.
- 14. Meure, L.A., Foster, N.R. & Dehghani, F. "Conventional and Dense Gas Techniques for the Production of Liposomes: A Review". AAPS PharmSciTech **9**, 798 (2008).
- F. Szoka Jr., and D. Papahadjopoulos. "Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation". P. Natl. Acad. Sci. U.S.A. 75(9):4194–4198 (1978).
- 16. Otake, K.; Imura, T.; Sakai, H.; Abe, M. "Development of a New Preparation Method of Liposomes Using Supercritical Carbon Dioxide". Langmuir **2001**, 17, 3898–3901.
- 17. Lesoin L, Crampon C, Boutin O, et al. "Preparation of liposomes using the supercritical anti-solvent (SAS) process and comparison with a conventional method". J Supercrit Fluids 2011; 57:162-174.
- 18. Zhenjun Huang, Xuan Li, et al. "*Progress involving new techniques for liposome preparation*". Asian journal of pharmaceutical sciences 9 (2014) 176-182.
- C. Li, and Y. Deng. "A novel method for the preparation of liposomes: Freeze drying of monophase solutions". J. Pharm. Sci. 93(6):1403–1414 (2004).
- A. Jahn, W. N. Vreeland, D. L. DeVoe, L. E. Locascio, and M. Gaitan. "Microfluidic directed formation of liposomes of controlled size". Langmuir. 23(11):6289–6293 (2007).
- 21. Jahn, A., Vreeland, W.N., Gaitan, M., Locascio, L.E., 2004. "Controlled vesicle selfassembly in microfluidic channels with hydrodynamic focusing". Journal of the American Chemical Society 126, 2674–2675.

- 22. Hood, R.R., et al., A facile route to the synthesis of monodisperse nanoscale liposomes using 3D microfluidic hydrodynamic focusing in a concentric capillary array. Lab on a Chip, 2014. **14**(14): p. 2403-2409.
- 23. Wagner, A., et al., *The crossflow injection technique: an improvement of the ethanol injection method.* Journal of liposome research, 2002. **12**(3): p. 259-270.
- 24. Costa, A.P., et al., *Liposome formation using a coaxial turbulent jet in co-flow.* Pharmaceutical research, 2016. **33**(2): p. 404-416.
- 25. Pradhan, P., et al., *A facile microfluidic method for production of liposomes*. Anticancer research, 2008. **28**(2A): p. 943-947.
- 26. Jahn, A., et al., *Microfluidic mixing and the formation of nanoscale lipid vesicles*. ACS nano, 2010. **4**(4): p. 2077-2087.
- 27. Phapal, S.M. and P. Sunthar, *Influence of micro-mixing on the size of liposomes self-assembled from miscible liquid phases.* Chemistry and physics of lipids, 2013. **172**: p. 20-30.
- 28. Mijajlovic, M., et al., *Microfluidic hydrodynamic focusing based synthesis of POPC liposomes for model biological systems.* Colloids and surfaces B: biointerfaces, 2013. **104**: p. 276-281.
- 29. Lim, J.-M., et al., Ultra-high throughput synthesis of nanoparticles with homogeneous size distribution using a coaxial turbulent jet mixer. ACS nano, 2014. **8**(6): p. 6056-6065.
- 30. Sabrina Bochicchio, Annalisa Dalmoro, Federica Recupido, Gaetano Lamberti, Anna Angela Barba. "Nanoliposomes Production by a Protocol Based on a Simil-Microfluidic Approach". Book Advances Bionanomaterials pp 3-8.
- 31. Murday, J.S.; Siegel, R.W.; Stein, J.; Wright, J.F. "Translational Nanomedicine: Status Assessment and Opportunities". Nanomedicine 2009, 5, 251-273.
- 32. Marco Iannone, Diego Caccavo, Anna Angela Barba, Gaetano Lamberti. *A low-cost push-pull syringe pump for continuous flow applications*, HardwareX, Volume 11, 2022, e00295.
- 33. Bazdyga, J.; Bourne, J. R. "*Turbulent Mixing and Chemical Reactions*"; John Wiley & Sons: New York, 1999.
- 34. Cacace, M., "Stabilizzazione tramite spray drying di sospensioni liposomiali". 2020: Università degli studi di salerno.

 Horky P, Skalickova S, Urbankova L, Baholet D, Kociova S, Bytesnikova Z, et al. "Zinc phosphate-based nanoparticles as a novel antibacterial agent: in vivo study on rats after dietary exposure". J Anim Sci Biotechnol. 2019;10:17
Engineering ToolBox. Density of Ethanol Water Mixtures . 2019; Available from:

https://www.engineeringtoolbox.com/ethanol-water-mixturedensity-d_2162.html.

- González, B., et al., "Density, dynamic viscosity, and derived properties of binary mixtures of methanol or ethanol with water, ethyl acetate, and methyl acetate at T=(293.15, 298.15, and 303.15)K". The Journal of Chemical Thermodynamics, 2007. 39(12): p. 1578-1588.
- 38. Klinov, A. and I. Anashkin, "Diffusion in Binary Aqueous Solutions of Alcohols by Molecular Simulation". Processes, 2019. 7(12).
- 39. Caccavo, D., "Analisi del processo di granulazione per la produzione di forme farmaceutiche solide". 2010: Università degli studi di salerno.
- 40. ISO 22412:2008 "Particle Size Analysis Dynamic Light Scattering"
- 41. Thomas, J. C. "*The determination of log normal particle size distributions by dynamic light scattering*" J. Colloid Interface *Sci.* **117** (1) pp 187-192 (1987)