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Abstract 

Liposomes - small spherical vesicles with dimensions ranging from 25 

nm to 1 µm in diameter - generally consist of a double layer of natural 

non-toxic phospholipids or cholesterol. Due to their size and 

amphipathic character, as well as their biocompatibility, liposomes are 

promising systems for drug delivery. The properties of liposomes differ 

greatly with their lipid composition, surface charge, size and method of 

preparation.  

In this thesis work the effect of fluid dynamics conditions in the  

simil-microfluidic production method of nanoparticles is investigated. 

In this method a stream is injected in a second one in a co-current 

configuration. At the interface of the two nanoparticles should be 

formed. Since this approach is based on the microfluidic findings, the 

standard operative conditions set the flow rates of the two fluids on a 

value that assure laminar conditions. However, the finding of Lim et al., 

ACS Nano (2014) suggested that turbulent fluid dynamic conditions 

could improve the quality of the produced nanoparticles, reducing their 

size.  

In this work the fluid dynamic behavior of the water/ethanol mixture 

with a ratio of 1:2 by volume in both streams, as well as the behavior of 

pure ethanol (injected stream) and water and the pure water/water. Fluid 

dynamics was observed through the use of a tracer and a camera. Videos 

were recorded and analyzed through the use of MATLAB®. This made 

it possible to obtain important information concerning the regimes of 

motions obtained as a function of the Reynolds number 𝑁𝑅𝑒 and the 

ratio of the velocities 𝐹𝑉𝑅.  

Thanks to the data collected from the fluid dynamics analysis and taking 

into account the properties of the formulations - density and viscosity - 

and the design parameters of the equipment, it was possible to 

implement a model capable of providing information on the process on 
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COMSOL Multiphysics® Software. The fluid dynamics trend on 

COMSOL® software was obtained using a turbulent k-ε RANS model. 

Once the information on the production phase was obtained, the 

production of nanoparticles of zinc phosphate and liposomes were 

carried out. The characterization of the samples produced was carried 

out using the DLS: as regards the liposomal productions, the 

characterization also took into account the analysis of the samples with 

the Nano Zetasizer and the optical microscope. 

 So, summarizing, in this thesis work the effect of fluid dynamics in the 

production process of zinc nanoparticles was analyzed, then 

implementing the results obtained for the production of liposomes 

through the use of a microfluidic-like technique. The results obtained 

determined the presence of a decrease in the average size of the 

nanoparticles obtained, passing from a laminar regime to a turbulent 

one. 
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