Analisi dei parametri del processo di granulazione di HPMC

Emanuele Marrone

Emanuele Marrone

UNIVERSITÀ DEGLI STUDI DI SALERNO

Dipartimento di Ingegneria Industriale Corso di Laurea Magistrale in Ingegneria Chimica

Analisi dei parametri del processo di granulazione di HPMC

Tesi in **Fenomeni di trasporto**

Relatore:

Prof. Ing. Gaetano Lamberti

Candidato:

Emanuele Marrone matricola 0622200443

Correlatori:

Ing. Diego Caccavo

Ing. Veronica De Simone

Anno Accademico 2017/2018

Alla mia famiglia

Questo testo è stato stampato in proprio, in Times New Roman

La data prevista per la discussione della tesi è il 20/02/2019 Fisciano, 11/02/2019

Sommario

Sommario	I
Indice delle figure	V
Indice delle tabelle	XIII
Abstract	XV
Introduzione	1
1.1 La granulazione: definizione e obiettivi	2
1.2 Tecniche di granulazione	2
1.2.1 Granulazione a secco	3
1.2.2 Granulazione a umido	4
1.3 Processi di granulazione ad umido	_ 10
1.3.1 Processi multi-step	10
1.3.2 Processi single-step	12
1.4 Stato dell'arte	_ 13
1.4.1 Central composite design (CCD) nel processo di granulazione di HPMC e correlazioni tra i parametri di processo e le proprietà del prodotto.	13
1.4.2 Processo di granulazione ad umido: analisi dei fenomeni e ottimizzazione dei parametri di processo.	18
1.4.3 Modellazione e ottimizzazione: impiego della RSM (Response Surface Methodology)	23
1.4 Obiettivi della tesi	_ 27
Materiali e metodi	29

2.1 Materiali	_ 30
2.1.1 Idrossipropilmetilcellulosa (HPMC)	30
2.1.2 Acqua distillata	31
2.2 Apparecchiature	_ 31
2.2.1 Atomizzatore ad ultrasuoni	32
2.2.2 Pompa peristaltica	34
2.2.3 Granulatore	36
2.2.4 Essiccatore	37
2.2.5 Dispositivo di analisi PSD	39
2.2.6 Analizzatore alogeno di umidità	41
2.3 Metodi	_ 43
2.3.1 Definizione dei parametri di processo	43
2.3.2 Descrizione del processo di granulazione	46
2.3.3 Descrizione del processo di essiccamento	48
2.3.4 Design of Experiments (DoE) e Central Composite Designs (CCD)	50
2.3.5 Analisi PSD (Particle Size Distribution)	54
2.3.6 Granulometria e funzioni di distribuzione	61
Modellazione statistico-matematica	6
3.1 Impiego dei modelli matematici	_ 70
3.2 Test statistici per la valutazione dei dati sperimentali e verifica di ipotesi	_ 71
3.3 Ottimizzazione multi-risposta e funzione di desiderabilità	_72
3.4 La metodologia delle superfici di risposta (RSM, Response Surface Methodology)	_73
3.5 L'ANOVA (Analysis of Variance)	_ 74
3.5.1 F-value, p-value e R ² alla base dell'analisi della varianza	75
3.5.2 Il modello statistico e l'analisi della regressione	80
3.6 Design-Expert (versione 11)	_ 88
3.6.1 Applicazione di Design-Expert per lo studio e l'ottimizzazione del processo di granulazione a umido	88

Sommario e indici.	Pag. III
3.6.2 Introduzione all'utilizzo del software	89
3.6.3 RSM – Central Composite Design	90
3.6.4 Analysis	92
3.6.5 Post Analysis	107
3.6.6 Optimization	108
Risultati e discussione	113
4.1 Analisi della fase di granulazione	114
4.1.1 Risultati sperimentali del processo di granulazione	114
4.1.2 Risultati modellistici del processo di granulazione	127
4.2 Processo globale: granulazione ed essiccamento	138
4.2.1 Risultati sperimentali del processo globale	138
4.2.2 Risultati modellistici del processo globale	145
Conclusioni	155
5.1 Conclusioni	156
Bibliografia	159

Figura 1. Tecniche di granulazione2
Figura 2. Tecnica di compattazione (rullo compattatore) e sgretolamento per la granulazione a secco [1]
Figura 3. Principali meccanismi del processo di granulazione ad umido5
Figura 4. Fenomeni di capillarità tra le particelle di polvere [1]6
Figura 5. Fasi di formazione dei ponti liquidi [1]
Figura 6. Fasi di crescita dei granuli [1]
Figura 7. Carico di rottura dei granuli in funzione del livello di saturazione [4]. 9
Figura 8. Effetti di crescita e rottura dei granuli durante un processo di granulazione [4]
Figura 9. Apparecchiature per la miscelazione e l'impasto delle polveri [1] 10
Figura 10. Apparecchiature per la fase di granulazione [1]11
Figura 11. Essiccatore a letto fluido [1]11
Figura 12. Schema strutturale di un granulatore ad alta velocità con vista interna [1]
Figura 13. Principali tipologie di granulatori a letto fluido [1]13
Figura 14. Dispositivo DIA per l'acquisizione e analisi dinamica dell'immagine
Figura 15. Distribuzione cumulativa numerica e volumetrica ottenuta dall'analisi PSD
Figura 16. Analisi del numero di particelle per unità di volume 20
Figura 17. Percentuale di resa e scarto grande del processo di granulazione a umido
Figura 18. Superficie di risposta della resa del processo di granulazione al tempo ottimale di 12 minuti
Figura 19. Alcuni profili della superficie di risposta generata da un modello quadratico per l'ottimizzazione di due variabili
Figura 20. Struttura chimica dell'HPMC

Figura 21. Campione di HPMC (50 g) da sottoporre a processo di granulazione
Figura 22. Atomizzatore ad energia ultrasonica VCX 130 PB [8]32
Figura 23. Ugello di un atomizzatore ad ultrasuoni [9]32
Figura 24. Particolare del principio di funzionamento dell'atomizzatore ultrasonico
Figura 25. Circuito esterno per l'afflusso del legante alla testa dell'atomizzatore
Figura 26. Pompa peristaltica Velp Scientifica SP311 [10]34
Figura 27. Testa di una pompa peristaltica [11]
Figura 28. Principio di funzionamento di una pompa peristaltica [11]35
Figura 29. Struttura di un granulatore di tipo planetario [1]36
Figura 30. Esempio di granuli ottenuti nella camera di un granulatore planetario
Figura 31. Essiccatore TG200 nelle sue tre principali configurazioni di utilizzo [12]
Figura 32. Dispositivo di analisi PSD (particle size distribution)
Figura 33. Fotocamera digital Chameleon3 1.5 Mp Mono USB3 vision [13]40
Figura 34. Particolare della fotocamera e dell'obiettivo di acquisizione delle immagini
Figura 35. Analizzatore alogeno di umidità OHAUS MB45 [14]41
Figura 36. Campione di particelle granulometriche da sottoporre all'analisi dell'umidità mediante analizzatore alogeno42
Figura 37. Particolare del piatto portacampione e del reggipiatto sottostante [14]42
Figura 38. Particolare del collegamento tra la pompa peristaltica e l'atomizzatore ad ultrasuoni
Figura 39. Fase di iniezione iniziale del legante e miscelazione del letto di polvere
Figura 40. Fase di granulazione terminata l'iniezione del legante47
Figura 41. Granuli ottenuti al termine del processo di granulazione48
Figura 42. Essiccatore a letto fluidizzato RETSCH TG-200 in fase di funzionamento
Figura 43. Camera di essiccamento e della griglia forata per il passaggio dell'aria
Figura 44. Display di settaggio delle condizioni operative49

Figura 45. Camera di essiccamento e fluidizzazione del letto di particelle durante l'esecuzione di una prova
Figura 46. Granuli ottenuti al termine del processo di essiccamento 50
Figura 47. Tecnica DIA (Dynamic Image Analysis) per lo studio della dimensione dei granuli durante il processo di granulazione [13]
Figura 48. Regione di interesse
Figura 49. Schermata di calibrazione del software per l'acquisizione delle immagini
Figura 50. Dispositivo di acquisizione delle immagini in fase di calibrazione 58
Figura 51. Immagine usata per la calibrazione del dispositivo di acquisizione delle immagini
Figura 52. Schermata della Command Window relativa al livello ottimale 59
Figura 53. Schermata della Command Window relativa al fattore di conversione ottimale
Figura 54. Diametro area equivalente
Figura 55. Diametro di Feret
Figura 56. Ellipse ratio
Figura 57. Discretizzazione di intervallo [13]
Figura 58. Esempio di una funzione cumulativa
Figura 59. Funzione densità di probabilità
Figura 60. Relazione tra distribuzione cumulativa massica e numerica
Figura 61. Relazione tra la distribuzione di densità numerica e massica [13] 66
Figura 62. Esempio di una superficie di risposta [17]
Figura 63. Regioni critiche di rifiuto nel caso di un test di ipotesi bilaterale [18]
Figura 64. Tabelle della funzione di ripartizione della variabile normale standardizzata
Figura 65. Esempio di dispersione dei dati sperimentali e approssimazione con una retta di regressione
Figura 66. Tabella di distribuzione del test t-student
Figura 67. Esempio di dispersione dei dati sperimentali e approssimazione con un piano nello spazio
Figura 68. Esempio di dispersione dei dati sperimentali e approssimazione con una funzione quadratica
Figura 69. Schermata introduttiva del software Design-Expert 11
Figura 70. Schermata relativa al New Design

Figura 71. Schermata relativa allo Standard Design e alla Response Surface90
Figura 72. Schermata di compilazione delle condizioni della CCD91
Figura 73. Schermata di definizione della variabile di risposta91
Figura 74. Schermata relativa al Layout Design della matrice CCD92
Figura 75. Schermata di fine analisi93
Figura 76. Menu di analisi dei risultati93
Figura 77. Schermata relativa al Fit Summary94
Figura 78. Tabella di confronto dei modelli94
Figura 79. Statistiche riassuntive del modello suggerito95
Figura 80. Valutazione dei termini inclusi nel modello96
Figura 81. Condizioni di modifica del modello97
Figura 82. Schermata di analisi della varianza (ANOVA)97
Figura 83. Tabella di riepilogo di f-value e p-value del modello suggerito98
Figura 84. Coefficienti dell'equazione rappresentativa del modello (in termini di fattori codificati)
Figura 85. Coefficienti dell'equazione rappresentativa del modello (in termini di fattori reali)
Figura 86. Diagrammi di diagnostica100
Figura 86. Diagrammi di diagnostica
Figura 86. Diagrammi di diagnostica
Figura 86. Diagrammi di diagnostica 100 Figura 87. Andamento di normale probabilità dei residui 101 Figura 88. Principali tipologie di grafici del modello (<i>model graphs</i>) 101 Figura 89. Grafici di modello All Factors 102
Figura 86. Diagrammi di diagnostica100Figura 87. Andamento di normale probabilità dei residui101Figura 88. Principali tipologie di grafici del modello (<i>model graphs</i>)101Figura 89. Grafici di modello All Factors102Figura 90. Factors Tool per la variazione dell'intensità delle variabili102
Figura 86. Diagrammi di diagnostica100Figura 87. Andamento di normale probabilità dei residui101Figura 88. Principali tipologie di grafici del modello (<i>model graphs</i>)101Figura 89. Grafici di modello All Factors102Figura 90. Factors Tool per la variazione dell'intensità delle variabili102Figura 91. Contour Plot della velocità vs. volume (AB)103
Figura 86. Diagrammi di diagnostica100Figura 87. Andamento di normale probabilità dei residui101Figura 88. Principali tipologie di grafici del modello (<i>model graphs</i>)101Figura 89. Grafici di modello All Factors102Figura 90. Factors Tool per la variazione dell'intensità delle variabili102Figura 91. Contour Plot della velocità vs. volume (AB)103Figura 92. Contour Plot della velocità vs. portata (AC)104
Figura 86. Diagrammi di diagnostica100Figura 87. Andamento di normale probabilità dei residui101Figura 88. Principali tipologie di grafici del modello (model graphs)101Figura 89. Grafici di modello All Factors102Figura 90. Factors Tool per la variazione dell'intensità delle variabili102Figura 91. Contour Plot della velocità vs. volume (AB)103Figura 93. Grafico relativo all'analisi di predicted vs. actual105
Figura 86. Diagrammi di diagnostica100Figura 87. Andamento di normale probabilità dei residui101Figura 88. Principali tipologie di grafici del modello (model graphs)101Figura 89. Grafici di modello All Factors102Figura 90. Factors Tool per la variazione dell'intensità delle variabili102Figura 91. Contour Plot della velocità vs. volume (AB)103Figura 93. Grafico relativo all'analisi di predicted vs. actual105Figura 94. 3D-Surface Plot della velocità vs. volume106
Figura 86. Diagrammi di diagnostica100Figura 87. Andamento di normale probabilità dei residui101Figura 87. Andamento di normale probabilità dei residui101Figura 88. Principali tipologie di grafici del modello (model graphs)101Figura 89. Grafici di modello All Factors102Figura 90. Factors Tool per la variazione dell'intensità delle variabili102Figura 91. Contour Plot della velocità vs. volume (AB)103Figura 92. Contour Plot della velocità vs. portata (AC)104Figura 93. Grafico relativo all'analisi di predicted vs. actual105Figura 94. 3D-Surface Plot della velocità vs. portata106Figura 95. 3D-Surface Plot della velocità vs. portata106
Figura 86. Diagrammi di diagnostica100Figura 87. Andamento di normale probabilità dei residui101Figura 87. Andamento di normale probabilità dei residui101Figura 88. Principali tipologie di grafici del modello (model graphs)101Figura 89. Grafici di modello All Factors102Figura 90. Factors Tool per la variazione dell'intensità delle variabili102Figura 91. Contour Plot della velocità vs. volume (AB)103Figura 92. Contour Plot della velocità vs. portata (AC)104Figura 93. Grafico relativo all'analisi di predicted vs. actual105Figura 94. 3D-Surface Plot della velocità vs. portata106Figura 95. 3D-Surface Plot della velocità vs. portata106Figura 96. Schermata relativa alla sezione Post Analysis107
Figura 86. Diagrammi di diagnostica100Figura 87. Andamento di normale probabilità dei residui101Figura 88. Principali tipologie di grafici del modello (model graphs)101Figura 89. Grafici di modello All Factors102Figura 90. Factors Tool per la variazione dell'intensità delle variabili102Figura 91. Contour Plot della velocità vs. volume (AB)103Figura 92. Contour Plot della velocità vs. portata (AC)104Figura 93. Grafico relativo all'analisi di predicted vs. actual105Figura 94. 3D-Surface Plot della velocità vs. portata106Figura 95. 3D-Surface Plot della velocità vs. portata106Figura 97. Schermata relativa alla sezione Post Analysis107Figura 97. Schermata relativa alla sezione di ottimizzazione108
Figura 86. Diagrammi di diagnostica100Figura 87. Andamento di normale probabilità dei residui101Figura 88. Principali tipologie di grafici del modello (model graphs)101Figura 89. Grafici di modello All Factors102Figura 90. Factors Tool per la variazione dell'intensità delle variabili102Figura 91. Contour Plot della velocità vs. volume (AB)103Figura 92. Contour Plot della velocità vs. portata (AC)104Figura 93. Grafico relativo all'analisi di predicted vs. actual105Figura 94. 3D-Surface Plot della velocità vs. volume106Figura 95. 3D-Surface Plot della velocità vs. portata107Figura 97. Schermata relativa alla sezione Post Analysis107Figura 98. Definizione dell'indice di peso per la variabile risposta a seconda108Figura 98. Definizione dell'indice di peso per la variabile risposta a seconda109
Figura 86. Diagrammi di diagnostica100Figura 87. Andamento di normale probabilità dei residui101Figura 88. Principali tipologie di grafici del modello (model graphs)101Figura 89. Grafici di modello All Factors102Figura 90. Factors Tool per la variazione dell'intensità delle variabili102Figura 91. Contour Plot della velocità vs. volume (AB)103Figura 92. Contour Plot della velocità vs. portata (AC)104Figura 93. Grafico relativo all'analisi di predicted vs. actual105Figura 94. 3D-Surface Plot della velocità vs. volume106Figura 95. 3D-Surface Plot della velocità vs. portata107Figura 97. Schermata relativa alla sezione Post Analysis108Figura 98. Definizione dell'indice di peso per la variabile risposta a seconda109Figura 99. Schermata relativa alle "rampe" nella sezione di ottimizzazione

Figura 101. Grafico della variazione del numero di granuli nel tempo (granulazione)
Figura 102. Grafico della distribuzione cumulativa numerica (Q ₀)116
Figura 103. Grafico della distribuzione cumulativa volumetrica (Q ₃) 117
Figura 104. Grafico di valutazione dell'intervallo utile e scarto grande del singolo test RUN 11
Figura 105. Grafico di valutazione della dimensione media delle particelle (X ₁₃) del singolo test RUN 11
Figura 106. Grafico della variazione dell'intervallo utile globale nel tempo (granulazione)
Figura 107. Grafico della variazione globale nel tempo della dimensione media delle particelle (X ₁₃)
Figura 108. Origin 3D-Scatter per l'intervallo utile del processo di granulazione
Figura 109. Origin 3D-Scatter per lo scarto grande del processo di granulazione
Figura 110. Origin 3D-Scatter per X ₁₃ del processo di granulazione 125
Figura 111. Origin 3D-scatter per l'intervallo utile del processo di granulazione e definizione dell'area di ottimizzazione
Figura 112. Disegno di progetto per lo studio modellistico del processo di granulazione
Figura 113. Analisi della varianza del modello quadratico per la valutazione dell'intervallo utile
Figura 114. Coefficienti della regressione non-lineare multipla (intervallo utile)
Figura 115. Grafici di tipo All-Factors per l'intervallo utile di granulazione al variare dei singoli parametri
Figura 116. Grafico 3D-Surface dell'intervallo utile con velocità vs. volume a portata variabile (17 mL/min)
Figura 117. Grafico 3D-Surface dell'intervallo utile con velocità vs. volume a portata variabile (34 mL/min)
Figura 118. Grafico 3D-Surface dell'intervallo utile con velocità vs. volume a portata variabile (58 mL/min)
Figura 119. Grafico 3D-Surface dell'intervallo utile con velocità vs. portata a volume variabile (75 mL)
Figura 120. Grafico 3D-Surface dell'intervallo utile con velocità vs. portata a volume variabile (100 mL)

Figura 121. Grafico 3D-Surface dell'intervallo utile con velocità vs. portata a volume variabile (125 mL)
Figura 122. Analisi della varianza del modello quadratico per la valutazione di X ₁₃
Figura 123. Tabella dei coefficienti reali della regressione non-lineare multipla (X ₁₃)
Figura 124. Grafici di tipo All-Factors di X13 al variare dei singoli parametri135
Figura 125. Grafico 3D-Surface di X ₁₃ con velocità vs. volume a portata variabile (17 mL/min)136
Figura 126. Grafico 3D-Surface di X ₁₃ con velocità vs. volume a portata variabile (34 mL/min)136
Figura 127. Grafico 3D-Surface di X ₁₃ con velocità vs. volume a portata variabile (58 mL/min)
Figura 128. Grafico della variazione del numero di granuli nel tempo (essiccamento)
Figura 129. Grafico di valutazione della resa, scarto grande e umidità del singolo test RUN 6140
Figura 130. a) Grafico della variazione della resa globale nel tempo. b) Grafico della variazione dell'umidità globale nel tempo141
Figura 131. Origin 3D-Scatter per il tempo del processo di essiccamento144
Figura 132. Origin 3D-Scatter per la resa del processo di essiccamento145
Figura 133. Disegno di progetto a doppia risposta per lo studio modellistico del processo di essiccamento
Figura 134. Analisi della varianza del modello lineare per la valutazione del tempo di essiccamento146
Figura 135. Coefficienti di regressione reali per il tempo di essiccamento147
Figura 136. Grafici di tipo All-Factors del tempo di essiccamento al variare dei singoli parametri
Figura 137. Grafico 3D-Surface del tempo con velocità vs. temperatura a portata di aria variabile (60 m ³ /h)148
Figura 138. Grafico 3D-Surface del tempo con velocità vs. temperatura a portata di aria variabile (160 m ³ /h)148
Figura 139. Analisi della varianza del modello lineare per la valutazione della resa di essiccamento
Figura 140. Coefficienti di regressione per la resa149
Figura 141. Grafici di tipo All-Factors della resa di essiccamento al variare dei singoli parametri

Pag.	XI

Figura 142. Grafico 3D-Surface della resa con velocità vs. temperatura a portata di aria variabile (60 m ³ /h)
Figura 143. Grafico 3D-Surface della resa con velocità vs. temperatura a portata di aria variabile (160 m ³ /h)151
Figura 144. Grafico della desiderabilità con velocità vs. temperatura a portata di aria variabile (60 m ³ /h)152
Figura 145. Grafico della desiderabilità con velocità vs. temperatura a portata di aria variabile (160 m ³ /h) 152
Figura 146. Riepilogo delle condizioni operative ottimali per la conduzione di un processo di granulazione multi-step

Indice delle tabelle

Tabella 1. Matrice CCD delle prove sperimentali 14
Tabella 2. Protocollo statistico CCD basato su fattori e livelli
Tabella 3. Standard ASTM utilizzati per la caratterizzazione delle particelle granulometriche 15
Tabella 4. Analisi dei valori medi (con deviazioni standard) delle percentuali inmassa delle particelle granulate16
Tabella 5. Dati inerenti il rapporto Hausner, l'indice di Carr e l'angolo di risposta per ciascuna prova sperimentale
Tabella 6. Proprietà chimico-fisiche dell'HPMC, fornito dalla Pentalchem SRL(San Clemente, RN-Italia)31
Tabella 7. Caratteristiche tecniche della pompa peristaltica Velp SP311 [10] 36
Tabella 8. Principali caratteristiche tecniche dell'essiccatore a letto fluidoTG200 [12]
Tabella 9. Principali caratteristiche tecniche della fotocamera [13] 41
Tabella 10. Principali caratteristiche tecniche dell'analizzatore di umiditàOHAUS MB45 [14]
Tabella 11. Definizione dei rispettivi livelli delle variabili indipendenti del processo di granulazione
Tabella 12. Definizione dei rispettivi livelli delle variabili indipendenti del processo di essiccamento
Tabella 13. Matrice sperimentale per il processo di granulazione 45
Tabella 14. Matrice sperimentale per il processo di essiccamento 45
Tabella 15. Notazione caratteristica nei test statistici 72
Tabella 16. Valori critici di z per definiti livelli di significatività
Tabella 17. Condizioni operative del test RUN 11 (granulazione) 115
Tabella 18. Intervallo utile medio ottimale e scarto grande medio per la fase di granulazione
Tabella 19. Condizioni operative ottimali per la conduzione del processo di granulazione (valutazione pre-modellazione)

Tabella 20. Condizioni operative ottimali per la conduzione del processo di granulazione (valutazione post-modellazione)	.138
Tabella 21. Condizioni operative del test RUN 6 (essiccamento)	138
Tabella 22. Resa e umidità al tempo ottimale per ciascuna prova sperimentale	.143
Tabella 23. Condizioni operative ottimali per la conduzione del processo di essiccamento (valutazione post-modellazione)	.153

Abstract

The granulation is the technological process of agglomeration in which small dust particles are joined together and made to adhere to each other in order to obtain particles of greater sizes called granules.

This process allows to overcome the problems related to the poor compressibility and the flowability of the powder particles.

In particular, wet granulation provides for the use of a binding agent and it is a combination of several steps: wetting and mixing, nucleation and coalescence, consolidation and breakage. These steps normally occur simultaneously in the granulation environment and help to influence the properties of the granules. A following drying phase is necessary to remove the solvent and to stabilize the granular product.

Today the wet granulation processes are very important from an industrial point of view, especially considering the main areas of use, such as the pharmaceutical, nutraceutical, food and zootechnical industry. Just considering the different fields of application it is important to study and optimize all the parameters at the base of the granulation process.

In this regard, the monitoring methods of the PSD (Particle Size Distribution) have taken particular interest during the granulation processes. Among these, the Dynamic Image Analysis (DIA) technique offers the advantage of analyzing many particles in a relatively short time and ensuring a good representation of the population in dimensional and morphological terms.

In this thesis the multi-step wet granulation process of HPMC powders has been studied, that includes a first granulation step and a second drying step. The aim of the thesis work has been the analysis of the effects of the main process parameters on the wet granulation step and on the drying one in order to optimize them. The dynamic image analysis technique for monitoring the PSD evolution has been Pag. XVI

necessary for the evaluation of the dimensional characteristics of the granulates. About that it has been very important the study of the particles cumulative distributions and the distribution densities to evaluate the yield of the respective processes.

Today, particular attention is also given to the development and the use of mathematical models because they allow to describe, predict and generally understand the granulation processes better. In this thesis work the modeling part has been studied by using a statistical and mathematics analysis software, Design Expert.

Therefore, thanks to the experimental campaign organized through the "Design of Experiments" technique and thanks to the statisticalmathematical modeling realized with the technique of "response surfaces", it has been possible to quantify the impact of each process parameter analyzed on the system's response. In this way it has been possible to optimize the whole process through the appropriate choice of operating conditions so as to maximize the yield and, at the same time, reduce the total process time (from the initial 32 minutes to the 15 minutes, determined by the optimization). In this way it was possible to optimize the whole process through the appropriate choice of operating conditions so as to maximize the yield and, at the same time, reduce the total process time (from 32 minutes to 15 minutes determined by the optimization).

Bibliografia

- 1. *Solidi di granulazione*. [consultato il 2018 11 Dicembre]; Disponibile al link: <u>http://docenti.unicam.it/tmp/3597.pdf</u>.
- 2. Cambiè, D., *Fabbricazione Industriale dei Medicinali*. 2011-2012: p. 283.
- 3. Iveson, S.M., et al., *Nucleation, growth and breakage phenomena in agitated wet granulation processes: a review.* Powder technology, 2001. **117**(1-2): p. 3-39.
- 4. Dilip, P., *Handbook of Pharmaceutical Granulation Technology*. Terza Edizione ed. 1997. 624.
- 5. De Simone, V., et al., *Central composite design in HPMC granulation and correlations between product properties and process parameters.* New Journal of Chemistry, 2017. **41**(14): p. 6504-6513.
- 6. De Simone, V., et al., *Wet-granulation process: Phenomenological analysis and process parameters optimization.* Powder Technology, 2018. **340**: p. 411-419.
- Bezerra, M.A., et al., *Response surface methodology (RSM) as a tool for optimization in analytical chemistry*. Talanta, 2008. 76(5): p. 965-977.
- 8. *Atomizzatore ad ultrasuoni VCX-130 PB*. [consultato 01/12/2018]; Disponibile al link: https://www.fishersci.co.uk/shop/products/ultrasonic-processor-vcx130-220v/11773729.
- 9. [consultato 01/12/2018]; Disponibile al link: <u>http://www.syringepump.com/atomizers.php</u>.
- 10. Scientifica, V. *Pompa peristaltica SP 311*. [consultato 01/12/2018]; Disponibile al link: https://www.velp.com/en/products/lines/4/family/57/peristaltic_pump/97/sp_311_peristaltic_pumps.

Pag.	160Processo di granulazione di HPMCEmanuele Marrone
11.	Instrument, L.L. <i>Pompa Peristaltica SP 311</i> . [consultato 01/12/2018]; Disponibile al link: <u>http://www.peristaltic-</u>
	<pre>pumps.eu/frequent_problems_in_peristaltic_pumps_and_their solution.html.</pre>
12.	Assisting, R.M.S. Essiccatore a letto fluido TG200.
	[consultato; Disponibile al link:
	https://www.retsch.it/it/prodotti/sistemi-
	ausiliari/essiccatori/funzioni-e-caratteristiche/.
13.	Armenante, M. Analisi e modellazione del processo di
	granulazione ad umido, 2017. Dipartimento di Ingengeria
	Industriale, Università degli Studi di Salerno, Salerno, Laurea
	Magistrale in Ingegneria Chimica.
14.	Analizzatore alogeno di umidità. [consultato 01/12/2018];
	Disponibile al link: https://www.geass.com/analizzatore-di-
	umidita-ohaus-mb45/.
15.	Gazzaniga, P.A., Disegno degli esperimenti (Design of
	<i>Experiments – DoE</i>). Milano. p. 64.
16.	Palugan, L., Disegni sperimentali (DoE) applicati a processi di
17	pellettizazione. 2013: Milano. p. 58.
17.	Butterfield, I. [consultato 01/12/2018]; Disponibile al link:
	Design/20 meth of steen as nhn
10	Statistics How To [consultate 15/01/2010]: Dispensibile al link:
10.	https://www.statisticshowto.datascioncocontrol.com/
19	Iohnson R A Statistics: Principles and Methods 2009: John
17.	Wiley & Sons 704
20	Isotalo I Lecture notes: Basics of Statistics 2012, 1-83
21.	Anderson, Introductory Statistical Analysis, ed. H.M.
	Company, 1974.
22.	Design Expert (v11) Guide. [consultato 01/12/2018];
	Disponibile al link:
	https://www.statease.com/docs/v11/index.html.
	·

Si chiude così questo percorso di laurea magistrale che, tra non poche difficoltà ma anche tante soddisfazioni, mi ha permesso di conoscere nuovi amici e di contribuire ulteriormente alla mia crescita personale.

Il primo ringraziamento va al Prof. Gaetano Lamberti, per avermi dato questa nuova opportunità e per avermi consentito di prendere parte a questo lavoro di tesi.

Un grande ringraziamento va poi a Veronica e Diego per avermi guidato in ogni attività, per avermi dato supporto e tutti i consigli e l'aiuto necessario per lo svolgimento di questo lavoro.

Ringrazio la mia famiglia e, in particolare, i miei genitori che con tanti sacrifici mi hanno dato la possibilità di studiare e di raggiungere quest'importante e ulteriore traguardo.

Ringrazio poi gli amici Armando, Davide, Luca, Otello e Andrea per le tante serate vissute tra scontri in "piazza" e sfide a Fifa, trasformando quelle poche ore insieme in momenti di spensieratezza, rendendo più leggero il carico di studi e le continue ansie pre-esami.

Un ultimo ringraziamento va alla mia ragazza, Amanda. A lei va un ringraziamento speciale per l'incessante supporto che mi ha dato in questi ultimi anni universitari e per essermi stata sempre vicina, soprattutto nei momenti più difficili.