Principi di Ingegneria Chimica Anno Accademico 2016-2017

Cognome	Nome	Matricola	Firma
E-mail:			

Problema 1. Un radiatore è assimilabile ad una lastra piana verticale, quadrata di lato L. Una stanza, a base quadrata di lato W ed altezza H, è inizialmente alla temperatura T_{A0} , mentre la temperatura esterna è T_E . Le pareti sono tutte esposte all'aperto, e sono costituite da una superficie finestrata A_f con coefficiente di scambio per conduzione U_f (cioè un coefficiente di scambio che tiene conto SOLO della conduzione attraverso le pareti piane multiple che costituiscono la finestra), la restante superficie laterale è costituita da muri con coefficiente di scambio per conduzione U_m . I coefficienti di scambio per convezione interni ed esterni alla stanza valgono rispettivamente h_I e h_E . Calcolare:

- 1. La portata di calore dispersa dalle pareti della stanza in condizioni iniziali (trascurando le perdite attraverso soffitto e pavimento);
- 2. La portata di calore iniziale che si ottiene alimentando una portata \dot{V} di fluido riscaldante (acqua calda), se questo è alimentato al radiatore alla temperatura T_1 , e la temperatura a cui esce il fluido caldo dal radiatore (considerare i parametri dell'aria alla temperatura T_{A0} e i parametri dell'acqua alla temperatura T_1 , la forza spingente in Grashof sia $|T_1 T_{A0}|$);
- 3. La temperatura che si stabilisce nella stanza allo stato stazionario (si può assumere che i coefficienti di scambio rimangano invariati rispetto ai casi precedenti).

Dati.
$$L = 0.8 \ m, W = 4 \ m, H = 3 \ m, T_{A0} = 2 \ C, T_E = -2 \ C, A_f = 8 \ m^2, U_f = 1 \frac{W}{m^2 K}, U_m = 0.5 \frac{W}{m^2 K}, U_f = 1 \frac{W}{m^2 K}, U_m = 0.5 \frac{W}{m^2 K}, U_m =$$

Problema 2. Un miscelatore da doccia funziona imponendo diverse perdite di carico concentrate alle portate di acqua calda (a temperatura T_c) e fredda (a temperatura T_f). Se la pressione del punto di alimentazione vale p_1 , le tubazioni di casa hanno diametro interno d e scabrezza relativa k/d, la lunghezza delle tubazioni è L_{tot} , l'impianto idrico si può considerare come disposto in piano, le sommatorie delle perdite di carico valgono $\sum e_{v.caldo}$ e $\sum e_{v.freddo}$ (lungo il percorso dell'acqua calda c'è la caldaia), nel miscelatore il fluido caldo incontra una perdita di carico concentrata $e_{v.c}$ e il fluido freddo incontra una perdita di carico concentrata $e_{v.f}$, la pressione all'uscita del miscelatore è quella atmosferica. Calcolare:

- 1. La portata volumetrica di acqua calda che scorre attraverso il miscelatore;
- 2. La temperatura e la portata volumetrica dell'acqua (tiepida) che si ottiene a valle del miscelatore (miscelando acqua calda e fredda);
- 3. La temperatura e la portata volumetrica dell'acqua (tiepida) se improvvisamente la pressione del punto di alimentazione diventa $p_{1.mod}$.

Dati.
$$p_1 = 2 \ bar, T_c = 60^{\circ} C, T_f = 15^{\circ} C, d = 2.5 \ cm, \frac{k}{d} = 0.001, L_{tot} = 40 \ m, \sum e_{v.caldo} = 6, \sum e_{v.freddo} = 4, e_{v.c} = 0.2, e_{v.f} = 5, p_{1.mod} = 1.5 \ bar.$$