Principi di Ingegneria Chimica Anno Accademico 2015-2016

Cognome	Nome	Matricola	Firma
E-mail:			

Problema 1. Una sferetta di diametro D, densità ρ_S , e calore specifico $\hat{C}_{P.S}$, a temperatura iniziale uniforme T_{S0} , viene immersa in un cilindro pieno d'acqua a temperatura T_{W0} , di diametro interno D_C e pieno fino al livello H (il livello di liquido è misurato quando la sfera è stata appena e completamente immersa, e il centro della sfera dista dal pelo libero del liquido esattamente D/2). La sferetta, lasciata libera di cadere in acqua, tocca il fondo del cilindro dopo un tempo t_C .

- 1. Stimare in quanto tempo si esaurisce il transitorio di caduta, e calcolare il tempo di caduta t_c (se si fanno ipotesi sul regime di moto, verificarle);
- 2. Considerando i parametri fisici dell'acqua costanti sui loro valori iniziali, calcolare il coefficiente di scambio termico sfera-acqua;
- 3. Considerando il sistema acqua + sfera adiabatico verso l'esterno, calcolare la differenza di temperatura tra sfera e liquido quando si esaurisce il transitorio di caduta. Quale dei due fenomeni transitori (caduta e scambio termico) è più veloce?

Dati. D = 0.3 mm, $\rho_S = 1000 \text{ kg/m}^3$, $\hat{C}_{P.S} = 2.4 \text{ kJ/(kg·K)}$, $T_{S0} = 60 \text{°C}$, $T_{W0} = 20 \text{°C}$, $D_C = 3 \text{ cm}$, H = 15 cm.

Problema 2. Una sferetta di naftalina ($C_{10}H_8$, densità ρ), di diametro iniziale D_0 , viene immessa in un recipiente pieno di aria pura alla temperatura T_0 e a pressione atmosferica. In queste condizioni (diffusività della naftalina in aria D, pressione di saturazione P^{sat}) la naftalina sublima e diffonde in aria. Calcolare:

- 1. la concentrazione di naftalina (mol/m^3) misurata ad una distanza d dal centro della sfera in condizioni stazionarie,
- 2. la portata iniziale di naftalina che sublima,
- 3. il tempo necessario affinché la sferetta si consumi del tutto.

Dati. $\rho = 1200 \text{ kg/m}^3$, $D_0 = 1.5 \text{ cm}$, $T_0 = 25 \text{°C}$, $D = 0.055 \text{ cm}^2/\text{s}$, $P^{sat} = 102 \text{ mmHg}$, d = 0.65 m.