Principi di Ingegneria Chimica Anno Accademico 2015-2016

Cognome	Nome	Matricola	Firma
E-mail:			

Problema 1. Uno scambiatore di calore è costituito da due tubi coassiali a parete metallica molto sottile. La temperatura del fluido caldo va da T_H^{IN} a T_H^{OUT} , la temperatura del fluido freddo va da T_C^{IN} a T_C^{OUT} . I due fluidi sono inviati in controcorrente allo scambiatore. Considerando costanti i calori specifici dei due fluidi ed il coefficiente globale di scambio, calcolare come cambiano T_H^{OUT} e T_C^{OUT} se (rispetto al caso iniziale):

- 1. la portata di fluido freddo si riduce a un terzo;
- 2. la lunghezza dello scambiatore raddoppia;
- 3. la portata di fluido caldo viene moltiplicata per tre.

Dati.
$$T_H^{IN} = 95$$
°C, $T_H^{OUT} = 55$ °C, $T_C^{IN} = 25$ °C, $T_C^{OUT} = 75$ °C.

Problema 2. Un sensore atmosferico, avente una forma sferica di diametro D, viene trainato da un aereo e viaggia in orizzontale con una velocità v, ad una quota H sul livello del mare. La potenza che l'aereo spende per trainare il sensore è P_D . La pressione a livello del mare è P_D , la temperatura dell'aria al livello del mare è P_D , e la temperatura stessa è funzione della quota P_D secondo una legge lineare. Calcolare:

- 1. La pressione e la densità dell'aria alla quota *H*,
- 2. La velocità dell'aereo e del sensore,

L'elettronica contenuta nel sensore produce una generazione volumetrica di calore *G*, calore che viene dissipato per convezione forzata.

3. Calcolare la temperatura del sensore.

Dati.
$$H = 7 \text{ km}, D = 30 \text{ cm}, P_D = 20 \text{ kW}, P_0 = 1 \text{ atm}, T_0 = 25 \text{°C}, (\partial T/\partial z) = -5 \text{°C/km}, G = 25 \text{ kW/m}^3$$