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Sommario

Gli idrogel sono network polimerici tridimensionali capaci di
assorbire elevate quantita di acqua. Essi sono costituiti da lunghe
catene polimeriche idrofile interconnesse da punti di reticolazione
(cross-links), che impediscono la dissoluzione del network. Sono
impiegati in diversi campi di applicazione, quali rilascio controllato,
ingegneria tissutale ecc. In particolare questo lavoro di tesi & connesso
all’utilizzo di idrogel nel trattamento del dolore lombare, dove
I’obiettivo ¢ quello di sostituire la parte degradata dei dischi
invertebrali, detta “Nucleus Pulposus” con un idrogel.

Al fine di approfondire il comportamento degli idrogel, in questo
lavoro & stata effettuata la caratterizzazione meccanica di
idrossietilcellulosa (HEC) reticolata chimicamente ed & stato
sviluppato, implementato e testato un modello monofasico 3D capace
di descrivere la diffusione combinata con la viscoelasticita degli
idrogel (comportamento poroviscoelastico).

L’HEC ¢ stata reticolata con Divinilsolfone (DVS) attraverso una
reazione di Michael. Sono stati realizzati e testati gel con tre diversi
rapporti massici HEC/DVS (2:1, 4:1, 10:1). Le proprieta meccaniche
dei gel a base di idrossietilcellulosa sono state determinate attraverso
test di stress-relaxation e frequency sweep.

Il modello matematico é stato sviluppato nel campo della meccanica
dei solidi non lineare, considerando il gel come un materiale iper-
viscoelastico, dove le equazioni costitutive possono essere derivate
dall’energia libera di Helmholtz del sistema. Quest’ultima ¢ stata
considerata come la somma del contributo elastico del network
(basato sulla teoria del modello affine) e sul contributo di mixing
(basato sulla teoria di Flory-Huggins). Il bilancio di massa relativo
all’acqua, il bilancio di quantita di moto relativo all’idrogel combinato
con un vincolo volumetrico sono state riformulate nella forma debole

[XI]
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(weak form) 2D-assialsimmetrica e implementate nel software
COMSOL Multiphysics 5.0.

Dal test di frequency sweep e stato visto che lo storage modulus, G’
era indipendente dalla frequenza e sempre maggiore del loss modulus
G", per tutti i rapporti HEC/DVS utilizzati. Questo ha dimostrato un
comportamento prevalentemente elastico e poco viscoso dei gel a base
di idrossietilcellulosa. Il modulo di rilassamento G(t) e stato ottenuto
da G’ e G” e poi confrontato con il valore di G(t) ottenuto usando un
modello SLS (Standard Linear Solid model), al fine di ricavare valori
di primo tentativo di G;, G, e T per inizializzare la procedura di
ottimizzazione all’interno del modello poroviscoelastico.

Test non confinati sono stati eseguiti per un tempo di 600 secondi
fissato il diametro dei gel (9.5 mm) al fine di valutare I’effetto di
differenti quantita di reticolante, e per tempi piu lunghi (10000
secondi), per un dato rapporto HEC/DVS (2:1), allo scopo di ricavare
una stima dell’effetto di diversi diametri dei campioni (d=5, 12, e 20
mm). | risultati hanno mostrato che aumentando il grado di
reticolazione dell’HEC, lo stress raggiunge valori piu elevati (per una
determinata deformazione). Per i test di lunga durata, le curve di
stress-relaxation sono risultate inizialmente indipendenti dal diametro
dei campioni mentre si sono distinte per tempi piu lunghi,
confermando che il rilassamento di gel a base di HEC ¢ dovuto alla
viscoelasticita intrinseca del network polimerico nella prima fase e
alla migrazione di solvente nella fase finale degli esperimenti.

| test confinati sono stati effettuati per un tempo di 600 secondi, su gel
di diametro pari a 9.5 mm variando il rapporto HEC/DVS, e anche su
gel di differente diametro (9.5 e 5 mm) per un determinato grado di
reticolazione del’HEC (HEC/DVS = 2:1). L’andamento ottenuto ¢
risultato simile alla compressione non confinata: aumentando la
quantita di reticolante utilizzata, anche lo stress registrato € piu
elevato, per una data deformazione. Inoltre lo stress € risultato
indipendente dal diametro del campione assumendo valori simili per
ambedue le dimensioni analizzate. Tuttavia, 1 risultati confinati non
sono discostati da quelli confinati in modo pronunciato.

Per quanto riguarda i risultati modellistici, la procedura di
ottimizzazione & stata eseguita sui test a breve termine al fine di
determinare i moduli elastici G;, G, e il tempo di rilassamento t. Una
stimati questi parametri, il modello é stato capace di predire il
comportamento dei gel per diversi valori di deformazione applicata.
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Nel caso di test a lungo termine, uno studio parametrico sulla
diffusivitd D, € stato eseguito in modo da descrivere il rilassamento
poroelastico. L’ordine di grandezza del coefficiente di diffusione
ottenuto dallo sweep parametrico che meglio prevedeva il rilascio di
acqua e il rilassamento del sistema é risultato pari a 1 X 107°m?/s.
Le predizioni del modello per gli esperimenti confinati non sono state
soddisfacenti, tuttavia hanno sottolineato 1’importanza della cinetica
del trasporto di acqua sul comportamento di stress-relaxation.
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Abstract

Hydrogels are three-dimensional polymeric network capable of absorb
large amount of water. They are composed of long hydrophilic
polymer chains interconnected by cross-links, which prevent the
network dissolution. They are used in several frontier fields, such as in
drug delivery applications, tissue engineering applications, etc. In
particular this thesis is connected to the use of hydrogels for the
treatment of low back pain, where the purpose is to replace degraded
“Nucleus Pulposus” with a hydrogel.

With the aim of further investigate the hydrogels’ behavior, in this
work the mechanical characterization of covalently crosslinked
HydroxyEthylCellulose (HEC) was carried out and a 3D monophasic
model capable of describing the diffusion coupled with the
viscoelasticity of hydrogels (poroviscoelastic behavior) was
developed, implemented and tested.

The HEC was crosslinked by the Divinyl Sulfone (DVS) according to
a Michael addition reaction. Gels with three different HEC/DVS
weight ratios (2:1, 4:1 and 10:1) were produced and tested. The
mechanical properties of the HEC gels were determined through stress
relaxation tests and frequency sweeps.

The mathematical model was developed within the field of nonlinear
solid mechanics, considering the gel as a hyper viscoelastic material
where the constitutive equations could be derived from the system
Helmholtz free energy. This last was derived as the sum of the
network elastic contribution (based on the affine network model) and
the mixing contribution (based on the Flory-Huggins theory). The
water mass balance and the hydrogel linear momentum balance,
coupled with a volumetric constraint were recast in the 2D-
axisymmetric weak form and implemented in COMSOL Multiphysics
5.0.

[XV]
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The frequency sweep test gave frequency independent storage moduli
G’ and always greater than the loss moduli G”,for all the three
HEC/DVS ratios. This demonstrated a predominant elastic character
and low viscous properties of the prepared HEC gels. The linear
relaxation modulus G(t) was derived from G’ and G’ and then
compared to the value of G(t) obtained by using a Standard Linear
Solid model (SLS) in order to get the starting values of G;, G, and t to
initialize the optimization procedure into the poroviscoelastic model.

Unconfined tests were performed in a short time range (600 seconds),
on gels of a given diameter (9.5 mm) in order to evaluate the effect of
different amount of crosslinker, and in a long time range (10000
seconds), on gels of a given HEC/DVS ratio (2:1), in order to estimate
the effect of different diameters of the samples (d=5, 12, and 20 mm).
The results showed that increasing the degree of crosslinking of the
HEC, the stress reaches higher values (for a given strain). In the long
time range, the stress relaxation curves resulted to be size independent
at the beginning whereas they separated for longer times, confirming
that the HEC gels’ relaxation was due to the intrinsic viscoelasticity of
the network in the first part and due to migration of solvent in last part
of the experiments.

The confined experiments were performed for 600 seconds, on gels of
a given diameter (9.5 mm) varying the HEC/DVS ratio, and also on
different gel’s diameters (9.5 and 5 mm) for a fixed degree of
crosslinking of the HEC (HEC/DVS = 2:1). The trend was the same of
the unconfined compression: the stress increased as the amount of
crosslinker used increased, for a fixed strain. In the short time range,
the stress for both the diameters assumed similar values and the
relaxation recorded, in the case analyzed, was independent of the size
of the gel. However, the confined results were not dramatically
different from the unconfined ones.

Regarding the modeling results, an optimization procedure was
performed on a short time test in order to determine the elastic moduli
G4, G, and the relaxation time t. Once the parameters were estimated
the model was able to predict the gel behavior at different strains. For
the long time tests, a parametric study on the diffusivity D; was
carried out in order to describe the poroelastic relaxation. The order of
magnitude of the diffusion coefficient obtained from the parametric
sweep study that better predicted the water expelled and the system
relaxation was 1 X 107® m? /s. The model predictions for the confined
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experiments were not satisfying, however they pointed out the
importance of the kinetic of water transport on the stress-relaxation
behavior.
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