Analisi del comportamento poro-visco-elastico di idrogel a base di agarosio

Serena Poto

UNIVERSITÀ DEGLI STUDI DI SALERNO

Facoltà di Ingegneria Dipartimento di Ingegneria Industriale

Corso di Laurea in Ingegneria Chimica

Analisi del comportamento poro-visco-elastico di idrogel a base di agarosio

Tesi in

Principi di Ingegneria Chimica

Relatore:

Prof. Ing. Gaetano Lamberti

Correlatori:

Ing. Sara Cascone

Ing. Diego Caccavo

Anno Accademico 2015/2016

Candidata:

Serena Poto

matricola 0612201129

Gran parte del progresso sta nella volontà di progredire [Seneca]

Questo testo è stato stampato in proprio, in Times New Roman

La data prevista per la discussione della tesi è il 23/09/2016 Fisciano, 14/09/2016

Sommario

Sommario	I
Indice delle figure	V
Indice delle tabelle	IX
Abstract	XI
Introduzione	1
1.1 Idrogel	2
1.1.2 Meccanismo di swelling	4
1.1.3 Meccanismo di gelificazione	5
1.2 Applicazioni degli idrogel	7
1.2.1 Sistemi per il rilascio controllato di farmaci	7
1.3 Caratterizzazione del comportamento meccanico di idrogel	12
1.3.1 Prove di trazione	12
1.3.2 Prove di compressione non confinata	14
1.3.3 Test di indentazione	16
1.4 Obiettivi	17
Materiali e metodi	19
2.1 Materiali	20
2.1.1 Agarosio	20
2.1.2 Meccanismo di gelificazione dell'agarosio	22

2.2 Apparecchiature	_ 24
2.2.1 Texture Analyzer	24
2.2.2 Spettrofotometro	25
2.3 Metodi	_ 27
2.3.1 Preparazione delle soluzioni di agarosio	27
2.3.2 Preparazione dell'idrogel	28
2.3.3 Analisi gravimetriche	29
2.3.4 Test di compressione	30
2.3.5 Determinazione della concentrazione di agarosio in una soluzione mediante tecnica colorimetrica	33
Modellazione	3
3.1 Introduzione	_ 38
3.2 Stato dell'arte: il modello poro-visco-elastico	_ 39
3.2.1 Conservazione della massa, del momento lineare e vincolo volumetrico	41
3.2.2 Equazioni costitutive	42
3.2.3 Implementazione	45
3.3 Simulazione	_ 46
3.3.1 Geometria	46
3.3.2 Condizioni iniziali e al contorno	47
3.3.3 Ottimizzazione	49
Risultati e discussione	5
4.1 Prove gravimetriche	_ 56
4.2 Test di compressione	_ 60
4.2.1 Test 1: test di compressione sul gel allo 0.97% in massa di polimero	61
4.2.2 Test 2: test di compressione sul gel al 2.14% in massa di polimero	64
4.2.3 Test 3: test di compressione sul gel al 3.58% in massa di polimero	66
4.2.4 Test 4: test di compressione sul gel al 4.64% in massa di polimero	68

4.2.5 Confronto dei risultati dei test di compressione	70
4.3 Risultati modellistici: stima dei parametri	_ 72
4.3.1 Stima dei parametri per il test 1	72
4.3.2 Stima dei parametri per il test 2	74
4.3.3 Stima dei parametri per il test 4	76
4.3.4 Trend dei parametri con la frazione massica iniziale di polimero nel gel	78
4.4 Relazioni tra i parametri del modello e i dati sperimentali	_ 82
4.5 Confronto curva stress-relaxation con diversi valori di diffusività	_ 87
Conclusioni	89
Bibliografia	93
Ringraziamenti	95

Indice delle figure

Figura 1. Struttura di un idrogel con specie ioniche [1]	2
Figura 2. Struttura di un idrogel [2]	3
Figura 3. Meccanismo di formazione di un gel di un polisaccaride in acqua [5]	6
Figura 4. Cinetica di rilascio di un sistema reservoir (curva sinistra) e di un sistema a matrice (curva destra)	9
Figura 5. Schematizzazione delle strategie dell'ingegneria tissutale	11
Figura 6. Apparecchiatura per test di trazione [9]	13
Figura 7. Curva sforzo-deformazione [9]	14
Figura 8. Apparecchiatura per test di compressione non confinata [10]	15
Figura 9. Grafico stress-strain, test di compressione non confinata [10]	15
Figura 10. Schema di un test di indentazione	16
Figura 11. Unità ripetitiva dell'agarosio, <i>M</i> = 306 g*mol ⁻¹	20
Figura 12. Immagine di molecole di agarosio, ricoperte da Pt-C, ottenuta al microscopio elettronico [13]	21
Figura 13. Schematizzazione del meccanismo di gelificazione dell'agarosio [14]	23
Figura 14. Texture Analyzer	24
Figura 15. Tipi di radiazione elettromagnetica	25
Figura 16. Assorbimento di una radiazione da parte di una soluzione	26
Figura 17. Variazione della limpidità della soluzione di agarosio con la dissoluzione	28
Figura 18. Stampo per preparare i campioni	28
Figura 19. Campione di gel di agarosio	29
Figura 20. Test di compressione al Texture Analyzer	30
Figura 21. Furfurale	33
Figura 22. Spettro delle soluzioni usate per la taratura	35

Figura 23. Regressione lineare per determinare i parametri della taratura	. 36
Figura 24. Schematizzazione del comportamento viscoelastico e poroelastico di un idrogel [16]	39
Figura 25. Schematizzazione del test di compressione non confinata [17]	39
Figura 26. Standard linear solid model [20]	40
Figura 27. Schematizzazione della geometria in COMSOL	47
Figura 28. Schematizzazione delle variabili di controllo e della funzione obiettivo [21]	49
Figura 29. Tipologie di problemi di ottimizzazione [21]	. 50
Figura 30. Interfaccia di ottimizzazione nel software COMSOL	. 51
Figura 31. Studio di ottimizzazione nell'interfaccia di COMSOL	. 51
Figura 32. Scelta del metodo dello studio di ottimizzazione nel software COMSOL	52
Figura 33. Definizione della funzione obiettivo nel software COMSOL	52
Figura 34. Definizione delle variabili di controllo nel software COMSOL	. 53
Figura 35. Importazione dei dati per l'ottimizzazione nel software COMSOL	53
Figura 36. Global Variable Probe nel software COMSOL	. 54
Figura 37. Valutazione dei parametri nei risultati, nel software COMSOL	. 54
Figura 38. Grafico della prova gravimetrica al 1.93% in massa di polimero	. 57
Figura 39. Grafico della prova gravimetrica al 2.29% in massa di polimero	. 58
Figura 40. Grafico della prova gravimetrica al 3.07% in massa di polimero	. 58
Figura 41. Grafico della prova gravimetrica al 4.2% in massa di polimero	. 59
Figura 42. Test 1: grafico stress-relaxation, test di compressione sul gel allo 0.97% in massa di polimero	61
Figura 43. Test 1: spettri determinati mediante il metodo colorimetrico per la valutazione dell'erosione del gel allo 0.97% in massa di polimero	62
Figura 44. Test 2: grafico stress-relaxation, test di compressione sul gel al 2.14% in massa di polimero	64
Figura 45. Test 3: grafico stress-relaxation, test di compressione sul gel al 3.58% in massa di polimero	66
Figura 46. Test 4: grafico stress-relaxation, test di compressione sul gel al 4.64% in massa di polimero	68
Figura 47. Grafico curve medie stress-relaxation	70
Figura 48. Confronto curva sperimentale e modellistica, gel allo 0.97% in massa di polimero	72

Figura 49. Grafico rappresentativo della massa d'acqua nel tempo per il gel allo 0.97% in massa di polimero	'3
Figura 50. Curva sperimentale e modellistica (gel al 2.14%)	4
Figura 51. Grafico rappresentativo della massa d'acqua nel tempo per il gel al 2.14% in massa di polimero	'5
Figura 52. Curva sperimentale e modellistica (gel al 4.64%)7	6
Figura 53. Grafico rappresentativo della massa d'acqua nel tempo per il gel al 4.64% in massa di polimero	7
Figura 54. Fitting lineare dei parametri del modello ($G1,G2,\tau$), contro la frazione massica iniziale di polimero nel gel	8
Figura 55. Confronto curva sperimentale e modellistica, gel al 3.58% in massa di polimero	'9
Figura 56. Posizione dei parametri del gel al 3.58% in massa di polimero, rispetto alle rette di fitting	80
Figura 57. La linea grigia rappresenta la curva modellistica ottenuta con l'ottimizzazione; la linea continua nera rappresenta la curva modellistica ottenuta con i parametri del fitting; la linea tratteggiata rappresenta la curva sperimentale	31
Figura 58. Grafico dei residui (differenze tra dati sperimentali e modellistici). Simboli pieni: curva modellistica ottenuta con l'ottimizzazione. Simboli vuoti: curva modellistica ottenuta con i parametri determinati dalle equazioni di fitting 8	32
Figura 59. Relazioni tra i dati sperimentali ($\sigma \infty$, $\sigma Peak$) e i parametri del modello ($G1, G2$)	3
Figura 60. Rilassamento di un singolo elemento di Maxwell e di una serie di elementi di Maxwell, nel tempo [23]	34
Figura 61. Curve sperimentali stress-log(t)	4
Figura 62. Funzione dello spettro di rilassamento, derivata dalla curva in Figura 60	5
Figura 63. Relazione tra l'ascissa del minimo di $d\sigma d(\log t)$ e il tempo di rilassamento τ	6
Figura 64. Studio parametrico per la diffusività; curve stress-relaxation del gel al 2.14% in massa di polimero	37

Indice delle tabelle

Tabella 1. Specifiche tecniche del Texture Analyzer	25
Tabella 2. Parametri dei test di compressione	32
Tabella 3. Soluzioni usate per la taratura	34
Tabella 4. Assorbanza delle soluzioni a 490 nm	35
Tabella 5. Quantità richieste per la preparazione delle soluzioni per le prove gravimetriche	56
Tabella 6. Quantità richieste per la preparazione delle soluzioni per i test di compressione	60
Tabella 7. % in massa di polimero dei campioni dei test di compressione	60
Tabella 8. Test 1: dati sperimentali della prova allo 0.97% in massa di polimero	63
Tabella 9. Test 2: dati sperimentali della prova al 2.14% in massa di polimero	65
Tabella 10. Test 3: dati sperimentali della prova al 3.58% in massa di polimero	67
Tabella 11. Test 4: dati sperimentali della prova al 4.64% in massa di polimero	69
Tabella 12. Dati sperimentali medi	71
Tabella 13. Dati ricavati dai dati sperimentali medi	71
Tabella 14. Parametri stimati con l'algoritmo di ottimizzazione	72
Tabella 15. Parametri del gel allo 0.97% in massa di polimero	73
Tabella 16. Parametri del gel al 2.14% in massa di polimero	74
Tabella 17. Parametri del gel al 4.64% in massa di polimero	76
Tabella 18. Parametri del gel al 3.58% in massa di polimero, derivati dal fitting	78
Tabella 19. Parametri del gel al 3.58% in massa di polimero, derivati dall'ottimizzazione di Levenberg-Marquardt	79
Tabella 20. Ascisse dei punti di minimo della derivata $d\sigma d(\log t)$	86
Tabella 21. Valori di diffusività utilizzati per lo studio parametrico	87

Abstract

Hydrogels are peculiar macromolecules, characterized by a polymeric matrix, an interstitial fluid and, eventually, some ionic species. These materials are particularly interesting in different subjects such as pharmaceutical industry, where they can form matrices for controlled drug delivery, or in tissue engineering. Looking at the different applications for hydrogels, it is obvious the interest in natural polymer based hydrogels, or in biocompatible ones. In order to select the right polymer for a certain application, their behaviour, from several points of view, has to be studied.

This thesis' work is focused on the analysis of the poro-visco-elastic behaviour of agarose hydrogels, at different polymer's concentration. Agarose is a natural polymer, derived from *agar*, a gelling substance extracted from a certain typology of red seaweed. Particularly, the mechanism of relaxation has been studied through unconfined compression tests in water.

During the experimental work, gravimetric analyses have been done in order to evaluate the solvent diffusion in hydrogels, either subjected to a compression force, or without any stress condition. The result of this kinds of analyses is that agarose hydrogel, under tests' conditions and independently from the polymer concentration, don't absorb significant amount of water. Gravimetric analyses have also been helpful in determining the final and initial mass fraction of polymer in samples. The water in which samples have been submerged during compression test has been analyzed using a colorimetric method in order to evaluate agarose concentration in solution, with the aim to quantify erosion phenomenon; the result of these analyses is that the erosion of the gel can be neglected. Compression tests have been made on hydrogels at different agarose concentration and stressrelaxation curves have shown a trend with these concentrations, otherwise, stress values seem to rise with concentration, at any time.

Later, the experiment has been simulated using a poro-visco-elastic model, implemented in COMSOL MULTIPHYSICS[©] software, in order to verify if this model correctly describes the analyzed material's behavior. The used model has some unknown parameters (G_1, G_2, τ) which have been evaluate by an optimization algorithm, whose aim is to force the calculated curve to match the experimental data. The parameters obtained have been correlated to the initial mass fraction of polymer of samples, and a linear relation seems to well describe these points. Later relations between experimental data and material's parameters have been found, in order to allow parameters' estimation without any other simulation's need; even in this case the relations found are linear. Then, a parametric sweep has been done, changing the diffusivity coefficient, in order to observe if water diffusion in hydrogels can be neglected, in test's condition, as shown in the experimental work. The result is that diffusivity does not affect the stress-relaxation curve, thus, the recorded experimental behavior could be described using a pure viscoelastic model. However, using this approach, parameters describing the whole water-polymer system can be found, in spite of parameters representative of the polymeric network.

In conclusion, the viscoelastic model is not suitable for a model generalization (i.e. in describing other kinds of test) as the used porovisco-elastic model, which describes agarose hydrogels behavior very well.

Bibliografia

- 1. Li, H., Smart hydrogel modelling, *Springer Science & Business Media* **2010**.
- F. Ganji, S. Vasheghani-Farahani, and E. Vasheghani-Farahani1, Theoretical Description of Hydrogel Swelling, *Iranian Polymer Journal* 19(5), **2010**: p. 375-398.
- 3. N. A. Peppas et Al, Physicochemical foundation and structural design od hydrogels in medicine and biology, *Annual Review of Biomedical Engineering*, 2, **2000**: p. 9-29.
- 4. Allan S. Hoffman, Hydrogel for biomedical application, *Advanced Drug Delivery Reviews*, 64, **2012**, p. 18-23.
- 5. B. Jeong, S.W. Kim, Y. H. Bae, Thermosensitive sol-gel reversible hydrogels, *Advanced Drug Delivery Review*, 54, **2002**: p. 37-51.
- 6. P. Gupta, K. Vermani, S. Garg, Hydrogels: from controlled release to pH responsive drug delivery, *Drug Discovery Today*, 10(7), **2002**: p. 569-579
- D. Caccavo, S. Cascone, G. Lamberti, A. A. Barba, Controlled drug release from hydrogel-based matrices: Experiment and modeling, *International Journal of Pharmaceutic*, 486, 2015: p. 144-152.
- 8. Kuen Yong e David J. Mooney, Hydrogels for Tissue Engineering, *Chemical Reviews*, 101(7), **2001**: p. 1869-1879
- 9. B. Johnson et al, Experimental Techniques for Mechanical Characterization of Hydrogels at the Microscale, *Society for Experimental Mechanics*, 44(1), **2004**: p. 21-28
- 10. J. Mc Cloyd et al, Material properties in unconfined compression of human nucleus pulposus, injectable hyaluronic acid-based hydrogels and tissue engineering scaffold, *European Spine Journal*, 16, **2007**: p. 1892-1898.
- 11. E. P. Chan et al, Sperical indentation testing of poroelastic relaxation in thin hydrogel layers, *Soft Matter*, 8, **2012**: p. 1492-1498.
- 12. V. Normand et al, New Insight into Agarose Gel Mechanical Properties, *Biomacromolecules*, 1, **2000** p. 730-738.

Pag. 94	<i>Comportamento</i>	poro-visco-elastico di idrogel di agarosio	Serena Poto
0	4		

- 13. T. G. L. Hickson e A. Polson, Some physical characteristic of the agarose molecule, *Biochimica et Bopphysica acta*, 165, **1968**: p. 43-58
- Jun-Yinh Xiong et al, Topology Evolution and Gelation Mechanism of Agarose Gel, *Journal of Physics, Chemistry and Biology*, 109(12), 2005: p. 5638-5643
- S. Suzanne Nielsen, Compositional Analysis of Foods, *Food Analysis*, 4th Edition, 10th chapter.
- 16. Yuhang Hu & Zhigang Suo, Viscoelasticity and poroelasticicy in elastomeric gels, *Acta Mechanica Solida Sinica*, 25(5), **2012**: p. 441-458
- 17. Qi Ming Hang et al, Separating viscoelasticity and poroelasticity of gels with different length and time scales, *Acta Mechanica Solida Sinica*, 30 (1), **2014**: p. 20-27
- 18. A. Vietri, Mathematical model of Hydrogels, relazione interna al gruppo *transport, phenomena and processes.*
- 19. Gurtin, M.E. Fried, an L. Anand, *The mechanics and thermodynamics of continua*. 2010: Cambridge University Press.
- 20. D. Caccavo, S. Cascone, G. Lamberti, A. A. Barba, Mathematical Modeling of hydrogels' poro-visco-elastic behavior, *congresso GRICU* (gruppo ricercatori di ingegneria chimica dell'università), **2016.**
- 21. *The Comsol Multiphysics user's guide:* Optimization module.
- 22. E. Davies et al, Dynamics of water in agar gels studied using low and high resolution H NMR spectroscopy, *International Journal of Food Science & Technology*, 45(12), **2010**: p. 2502-2507
- 23. Julian Vincent, *Structural biomaterials*, third edition: Princeton University Press.

Ringraziamenti

Le più felici delle persone, non necessariamente hanno il meglio di ogni cosa, soltanto traggono il meglio da ogni cosa che capita sul loro cammino [A. Einstein].

Con queste parole vorrei sottolineare quanto questo percorso mi abbia insegnato, soprattutto su me stessa; ho imparato che non bisogna arrendersi mai davanti agli ostacoli e che per raggiungere un obiettivo, bisogna credere in sé stessi.

Vorrei ringraziare tutte le persone che mi sono state vicine in questi anni e non solo, vorrei ringraziare tutte le persone che ho avuto la fortuna di conoscere.

Vorrei ringraziare, prima di tutto, il professore Gaetano Lamberti, per avermi permesso di intraprendere questo lavoro di tesi nel suo gruppo di ricerca e per essere stato sempre presente durante questo percorso.

Vorrei ringraziare Sara e Diego che hanno seguito costantemente il mio lavoro, insegnandomi molto. Grazie per aver sempre chiarito ogni mio dubbio, per avermi dato tutte le spiegazioni di cui avevo bisogno, con molta pazienza.

Ringrazio di cuore la mia famiglia, che mi ha sempre sostenuta, sia economicamente, ma soprattutto moralmente, in questi anni di studio; grazie per aver reso le mie giornate più leggere, con la vostra presenza e per avermi sopportata nei miei periodi di stress, cosa che so non essere così semplice.

Un ringraziamento speciale va al mio fidanzato, Daniele, per molte cose...Prima di tutto, grazie per aver creduto in me fin dall'inizio, quando dicevo di non volermi iscrivere ad ingegneria, per la paura di non esserne in grado, è anche grazie a te se ora sono giunta fin qui; grazie per avermi aiutata a credere in me stessa e per avermi spinto a dare sempre il meglio di me. Ringrazio di cuore tutti i miei amici, in particolare la mia migliore amica Maria Teresa, con cui ho condiviso tutte le esperienze della mia vita; grazie per i tuoi consigli e per avermi aiutata a conciliare lo studio con una passione così impegnativa, come la danza.

Vorrei ringraziare le mie "compagne di studio" Sara, Anna, Marina e Ida per aver condiviso con me questi tre intensi anni, tra corsi, esami, ansie, ma anche tante soddisfazioni.