Principi di Ingegneria Chimica Anno Accademico 2015-2016

Cognome	Nome	Matricola	Firma
E-mail:			

Problema 1. Un lenzuolo quadrato steso ad asciugare si può assimilare ad una lastra piana verticale, di lato Le di spessore $2x_1$, con una umidità iniziale omogenea pari a ρ_{W0} . Il lenzuolo, alla temperatura omogenea T_0 , è in aria stagnante e secca a temperatura T_a . Le temperature non variano né con la posizione né nel tempo. L'acqua nel tessuto viene trasportata con un meccanismo pseudo-diffusivo, e la diffusività apparente dell'acqua nel tessuto vale D_W . La relazione di equilibrio tra concentrazione di acqua nel lenzuolo e in aria è la seguente: $\rho_W = K_{eq} M_W C_W$, in cui ρ_W è la concentrazione massica di acqua nel lenzuolo, C_W è la concentrazione molare di acqua in aria, M_W è la massa molecolare dell'acqua e K_{eq} è la costante di equilibrio. Per la tensione di vapore dell'acqua usare la legge di Antoine o relazione simile, la diffusività del vapor d'acqua in aria è descritta dalla legge $D_{AW}(T) = D_0 T^n \operatorname{con} T$ in K.

- 1. Determinare se l'analisi del processo di asciugatura va effettuata a parametri concentrati o a parametri distribuiti;
- 2. Calcolare i coefficienti di scambio di materia e di calore tra lenzuolo e aria;
- 3. Il lenzuolo si può considerare asciutto quando in qualunque posizione l'umidità è inferiore o uguale al valore ρ_{Wf} . Calcolare dopo quanto tempo si asciuga il lenzuolo.

Dati.
$$L=2$$
 m, $x_1=2$ mm, $\rho_{W0}=40$ kg/m³, $T_0=10$ °C, $T_a=25$ °C, $D_W=10^{-8}$ m²/s, $\rho_{Wf}=0.5$ kg/m³, $K_{eq}=10000$, $D_0=1.87\cdot10^{-10}$ m²/s, $n=2.072$.

Problema 2. Una soluzione polimerica di densità ρ e di viscosità μ è contenuta in un serbatoio cilindrico di diametro D, e lo riempie fino ad un livello H_0 . Dal fondo del serbatoio parte un tubo liscio verticale di diametro interno d e lunghezza L, aperto all'atmosfera. Al tempo zero viene rimosso un tappo posto al termine del tubo verticale.

- 1. Proporre il modello descrittivo dello svuotamento del serbatoio, nell'ipotesi che il moto del fluido avvenga completamente in regime laminare e potendo trascurare le perdite di carico concentrate;
- 2. Se il tempo di svuotamento è t_s , calcolare la viscosità della soluzione. Verificare le ipotesi di moto laminare e di trascurabilità delle perdite di carico concentrate;
- 3. Verificare se, per un fluido di viscosità $\mu/10^3$, l'ipotesi di regime laminare nello svuotamento è verificata.

Dati. D = 2 m, $\rho = 1200 \text{ kg/m}^3$, $H_0 = 1.5 \text{ m}$, d = 2.5 cm, L = 3 m, $t_s = 10 \text{ h}$.