Transport Phenomena in Food Processes Academic Year 2012-2013

Last name	First name	ID	Signature

Problem 1. A power-law fluid (with constant fluid properties, ρ, m, n) flows through a tapered tube with circular cross-section, for which the tube radius changes linearly from R_{0} at the tube entrance to a slightly smaller value R_{L} at the tube exit.

1. Applying locally the result obtained for a circular tube (eq. 8.3-9), write the proper differential equation in $\mathrm{d} \mathcal{P} / \mathrm{d} z$;
2. Integrate the equation obtained in 1 . in order to get the pressure gradient;
3. Compare the mass flow rate obtainable for the power-law fluid and for an incompressible fluid of constant properties (ρ, μ), flowing in the same tube in presence of the same pressure gradient (the solution for incompressible Newtonian fluid is given by eq. 2B.10-3).

Data. $L=10 \mathrm{~m}, \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}, m=0.2 \mathrm{~Pa} \cdot \mathrm{~s}^{n}, n=0.85, R_{0}=10 \mathrm{~cm}, R_{L}=9 \mathrm{~cm}, \Delta \mathcal{P} / L=1.4 \mathrm{bar} / \mathrm{m}$, $\mu=0.2 \mathrm{~Pa} \cdot \mathrm{~s}$.

Problem 2. A piece of foodstuff shaped as a long cylinder with radius R and constant properties ($k, \rho \hat{C}_{P}$) was taken from a fridge with an initial uniform temperature T_{0}, and it was heated by hot air at temperature T_{∞}, flowing orthogonally to the cylinder axis, with velocity v_{∞}. Under these conditions, the Churchill \& Bernstein correlation holds, and the interphase heat transfer coefficient has the value h. After a time t^{*}, the axial temperature of the foodstuff was measured to be T_{A}. Calculate:

1. the value of air velocity, v_{∞};
2. the foodstuff thermal conductivity, k;
3. the surface temperature after the time $t^{*}, T_{s}\left(t^{*}, r=R\right)$.

The Churchill and Bernstein correlation is (D being the cylinder diameter):

$$
N_{N u}=\frac{h D}{k}=0.3+\frac{0.62 N_{R e}^{0.5} N_{P r}^{0.33}}{\left[1+\left(\frac{0.4}{N_{P r}}\right)^{0.67}\right]^{0.25}}\left[1+\left(\frac{N_{R e}}{282000}\right)^{0.625}\right]^{0.8}
$$

The air properties could be taken as constants on their initial values.
Data. $R=5 \mathrm{~cm}, \rho \hat{C}_{P}=6.0 \mathrm{MJ} /\left(\mathrm{m}^{3} \mathrm{~K}\right), T_{0}=5^{\circ} \mathrm{C}, T_{\infty}=150^{\circ} \mathrm{C}, h=35 \mathrm{~W} /\left(\mathrm{m}^{2} \mathrm{~K}\right), t^{*}=0.5 \mathrm{hr}, T_{A}=30^{\circ} \mathrm{C}$.

Problem 1. A power-law fluid (with constant fluid properties, ρ, m, n) flows through a tapered tube with circular cross-section, for which the tube radius changes linearly from R_{0} at the tube entrance to a slightly smaller value R_{L} at the tube exit.

1. Applying locally the result obtained for a circular tube (eq. 8.3-9), write the proper differential equation in $\mathrm{d} \mathcal{P} / \mathrm{d} z$;
2. Integrate the equation obtained in 1. in order to get the pressure gradient;
3. Compare the mass flow rate obtainable for the power-law fluid and for an incompressible fluid of constant properties (ρ, μ), flowing in the same tube in presence of the same pressure gradient (the solution for incompressible Newtonian fluid is given by eq. 2B.10-3).

Data. $L=10 \mathrm{~m}, \rho=1000 \mathrm{~kg} / \mathrm{m}^{3}, m=0.2$ Pa $\cdot \mathrm{s}^{n}, n=0.85, R_{0}=10 \mathrm{~cm}, R_{L}=9 \mathrm{~cm}, \Delta \mathcal{P} / L=1.4 \mathrm{bar} / \mathrm{m}$, $\mu=0.2$ Pa.s.

$$
\mathrm{L}_{\mathrm{m}}:=10 \cdot \mathrm{~m} \quad \rho:=1000 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \quad \mathrm{~m}:=0.2 \cdot \mathrm{~Pa} \cdot \mathrm{~s} .05 \quad \mathrm{n}:=0.85 \quad \mathrm{R}_{0}:=10 \cdot \mathrm{~cm} \quad \mathrm{R}_{\mathrm{L}}:=9 \cdot \mathrm{~cm} \quad \Delta \mathrm{P}_{\mathrm{L}} \mathrm{~L}:=1.4 \frac{\mathrm{~Pa}}{\mathrm{~m}} \quad \mu:=0.2 \cdot \mathrm{~Pa} \cdot \mathrm{~s}
$$

We consider a small region of the tapered tube to be a straight tube over a short distance $d z$; then we can write "locally"

$$
\begin{equation*}
w=\frac{\pi R^{3} \rho}{(1 / n)+3}\left[-\frac{d \mathcal{P}}{d z} \frac{R}{2 m}\right]^{1 / n} \tag{8.3-9}
\end{equation*}
$$

$$
d R _d z:=\frac{R_{L}-R_{0}}{L}=-1 \times 10^{-3}
$$

Take the nth power of both sides to get

$$
-\frac{d \rho^{\rho}}{d z}=\frac{2 m}{R}\left[\frac{w}{\pi R^{3} \rho}\left(\frac{1}{n}+3\right)\right]^{n}
$$

$$
\frac{\mathrm{d}}{\mathrm{dz}} \mathrm{P}=-\frac{2 \cdot \mathrm{~m}}{\mathrm{R}} \cdot\left[\frac{\mathrm{w}}{\pi \cdot \mathrm{R}^{3} \cdot \rho} \cdot\left(\frac{1}{\mathrm{n}}+3\right)\right]^{\mathrm{n}}
$$

in which R is a function of z :

$$
R=R_{0}+\left(\frac{R_{L}-R_{0}}{L}\right) z
$$

It is easier to integrate the differential equation if we rewrite it as

$$
-\frac{d \mathscr{P}}{d R} \frac{d R}{d z}=-\frac{d \mathcal{P}}{d R}\left(\frac{R_{L}-R_{0}}{L}\right)=\frac{2 m}{R}\left[\frac{w}{\pi R^{3} \rho}\left(\frac{1}{n}+3\right)\right]^{n}
$$

Then when this equation is integrated with respect to R, we get

$$
-\int_{\mathfrak{P}_{0}}^{\mathfrak{P}_{L}} d \mathscr{P}=\left(\frac{2 m L}{R_{L}-R_{0}}\right)\left[\frac{w}{\pi \rho}\left(\frac{1}{n}+3\right)\right]^{n} \int_{R_{0}}^{R_{L}} \frac{1}{R^{3 n+1}} d R
$$

Therefore

$$
\begin{aligned}
\wp_{0}-\wp_{L} & =\left(\frac{2 m L}{R_{L}-R_{0}}\right)\left[\frac{w}{\pi \rho}\left(\frac{1}{n}+3\right)\right]^{n}\left(\frac{R_{L}^{-3 n}-R_{0}^{-3 n}}{-3 n}\right) \\
& =\left(\frac{2 m L}{3 n}\right)\left[\frac{w}{\pi \rho}\left(\frac{1}{n}+3\right)\right]^{n}\left(\frac{R_{L}^{-3 n}-R_{0}^{-3 n}}{R_{0}-R_{L}}\right)
\end{aligned}
$$

$$
\frac{\Delta \mathrm{P}}{\mathrm{~L}}=\frac{2 \cdot \mathrm{~m}}{3 \cdot \mathrm{n}} \cdot\left[\frac{\mathrm{w}}{\pi \cdot \rho} \cdot\left(\frac{1}{\mathrm{n}}+3\right)\right]^{\mathrm{n}} \cdot\left(\frac{\mathrm{R}_{\mathrm{L}}^{-3 \cdot \mathrm{n}}-\mathrm{R}_{0}^{-3 \cdot \mathrm{n}}}{\mathrm{R}_{0}-\mathrm{R}_{\mathrm{L}}}\right)
$$

$\mathrm{w}:=\frac{\pi \cdot \rho}{\frac{1}{\mathrm{n}}+3} \cdot\left[\frac{3 \cdot \mathrm{n}}{2 \cdot \mathrm{~m}} \cdot \Delta \mathrm{P}_{-} \mathrm{L} \cdot\left(\frac{\mathrm{R}_{0}-\mathrm{R}_{\mathrm{L}}}{\mathrm{R}_{\mathrm{L}}^{-3 \cdot 0.85}-\mathrm{R}_{0}-3 \cdot 0.85}\right)\right]^{\frac{1}{0.85}}=0.175 \frac{\mathrm{~kg}}{\mathrm{~s}}$
$w=\frac{\pi\left(\mathscr{P}_{0}-\mathscr{P}_{L}\right) R_{0}^{4} \rho}{8 \mu L}\left[1-\frac{1+\left(R_{L} / R_{0}\right)+\left(R_{L} / R_{0}\right)^{2}-3\left(R_{L} / R_{0}\right)^{3}}{1+\left(R_{L} / R_{0}\right)+\left(R_{L} / R_{0}\right)^{2}}\right]$
$\mathrm{w}_{\mu}:=\frac{\pi \cdot \rho \cdot \Delta \mathrm{P}_{-} \mathrm{L} \cdot \mathrm{R}_{0}}{8 \cdot \mu} \cdot\left[1-\frac{1+\frac{\mathrm{R}_{\mathrm{L}}}{\mathrm{R}_{0}}+\left(\frac{\mathrm{R}_{\mathrm{L}}}{\mathrm{R}_{0}}\right)^{2}-3 \cdot\left(\frac{\mathrm{R}_{\mathrm{L}}}{\mathrm{R}_{0}}\right)^{3}}{1+\frac{\mathrm{R}_{\mathrm{L}}}{\mathrm{R}_{0}}+\left(\frac{\mathrm{R}_{\mathrm{L}}}{\mathrm{R}_{0}}\right)^{2}}\right]=0.222 \frac{\mathrm{~kg}}{\mathrm{~s}}$

Problem 2. A piece of foodstuff shaped as a long cylinder with radius R and constant properties $\left(k, \rho \hat{C}_{P}\right)$ was taken from a fridge with an initial uniform temperature T_{0}, and it was heated by hot air at temperature T_{∞}, flowing orthogonally to the cylinder axis, with velocity v_{∞}. Under these conditions, the Churchill \& Bernstein correlation holds, and the interphase heat transfer coefficient has the value h. After a time t^{*}, the axial temperature of the foodstuff was measured to be T_{A}. Calculate:

1. the value of air velocity, v_{∞};
2. the foodstuff thermal conductivity, k;
3. the surface temperature after the time $t^{*}, T_{s}\left(t^{*}, r=R\right)$.

The Churchill and Bernstein correlation is (D being the cylinder diameter):

$$
N_{N u}=\frac{h D}{k}=0.3+\frac{0.62 N_{R e}^{0.5} N_{P r}^{0.33}}{\left[1+\left(\frac{0.4}{N_{P r}}\right)^{0.67}\right]^{0.25}}\left[1+\left(\frac{N_{R e}}{282000}\right)^{0.625}\right]^{0.8}
$$

The air properties could be taken as constants on their initial values.
Data. $R=5 \mathrm{~cm}, \rho \hat{C}_{P}=6.0 \mathrm{MJ} /\left(\mathrm{m}^{3} \mathrm{~K}\right), T_{0}=5^{\circ} \mathrm{C}, T_{\infty}=150^{\circ} \mathrm{C}, h=35 \mathrm{~W} /\left(\mathrm{m}^{2} \mathrm{~K}\right), t^{*}=0.5 \mathrm{hr}, T_{A}=30^{\circ} \mathrm{C}$.

$$
\begin{aligned}
& \mathrm{T}_{\text {inf }}:=150^{\circ} \mathrm{C} \quad \mathrm{~T}_{0}:=5^{\circ} \mathrm{C} \quad \mathrm{~T}_{\mathrm{A}}:=30^{\circ} \mathrm{C} \quad \mathrm{R}:=5 \cdot \mathrm{~cm} \quad \mathrm{~h}:=35 \cdot \frac{\mathrm{~W}}{\mathrm{~m}^{2} \cdot \mathrm{~K}} \quad \mathrm{t}:=\frac{1}{2} \cdot \mathrm{hr} \\
& \rho \mathrm{C}_{\mathrm{P}}:=3000 \cdot \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \cdot 2000 \cdot \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}}=6 \times 10^{6} \cdot \frac{\mathrm{~J}}{\mathrm{~m}^{3} \cdot \mathrm{~K}} \\
& \mathrm{~N}_{\mathrm{Nu}}\left(\mathrm{~N}_{\mathrm{Re}}, \mathrm{~N}_{\mathrm{Pr}}\right):=0.3+\frac{0.62 \cdot \mathrm{~N}_{\mathrm{Re}}{ }^{0.5} \cdot \mathrm{~N}_{\mathrm{Pr}}}{\left[1+\left(\frac{0.4}{\mathrm{~N}_{\mathrm{Pr}}}\right)^{0.33}\right.}\left[1+\left(\frac{\mathrm{N}_{\mathrm{Re}}}{282000}\right)^{0.625}\right]^{0.8}
\end{aligned}
$$

1. The Churchill \& Bernstein correlation has to be solved iteratively in the unknown v.inf

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{f}}:=\frac{\mathrm{T}_{\mathrm{inf}}+\mathrm{T}_{0}}{2}=77.5 \cdot{ }^{\circ} \mathrm{C} \quad \mathrm{~N}_{\operatorname{Pr} \cdot \mathrm{A}}\left(\mathrm{~T}_{\mathrm{f}}\right)=0.706 \quad \mathrm{k}_{\mathrm{A}}\left(\mathrm{~T}_{\mathrm{f}}\right)=0.03 \cdot \frac{\mathrm{~W}}{\mathrm{~m} \cdot \mathrm{~K}} \quad v_{\mathrm{A}}\left(\mathrm{~T}_{\mathrm{f}}\right)=2.068 \times 10^{-5} \frac{5 \mathrm{~m}^{2}}{\mathrm{~s}} \\
& \mathrm{v}_{\mathrm{inf}}:=1 \cdot \frac{\mathrm{~m}}{\mathrm{~s}} \quad \text { Given } \quad \frac{\mathrm{h} \cdot 2 \cdot \mathrm{R}}{\mathrm{k}_{\mathrm{A}}\left(\mathrm{~T}_{\mathrm{f}}\right)}=\mathrm{N}_{\mathrm{Nu}}\left(\frac{\mathrm{v}_{\mathrm{inf}} \cdot 2 \cdot \mathrm{R}}{\nu_{\mathrm{A}}\left(\mathrm{~T}_{\mathrm{f}}\right)}, \mathrm{N}_{\mathrm{Pr} . \mathrm{A}}\left(\mathrm{~T}_{\mathrm{f}}\right)\right) \quad \mathrm{v}_{\mathrm{inf}}:=\operatorname{Minerr}\left(\mathrm{v}_{\mathrm{inf}}\right)=8.052 \frac{\mathrm{~m}}{\mathrm{~s}} \\
& \mathrm{~N}_{\mathrm{Re}}:=\frac{\mathrm{v}_{\mathrm{inf}} \cdot 2 \cdot \mathrm{R}}{\nu_{\mathrm{A}}\left(\mathrm{~T}_{\mathrm{f}}\right)}=3.893 \times 10^{4} \quad \quad \mathrm{~N}_{\mathrm{Nu}}\left(\mathrm{~N}_{\mathrm{Re}}, \mathrm{~N}_{\mathrm{Pr} . \mathrm{A}}\left(\mathrm{~T}_{\mathrm{f}}\right)\right)=117.67 \\
& \mathrm{j}_{\mathrm{H}}\left(\frac{\mathrm{v}_{\mathrm{inf}} \cdot 2 \cdot \mathrm{R}}{\nu_{\mathrm{A}}\left(\mathrm{~T}_{\mathrm{f}}\right)}, \mathrm{N}_{\text {Pr.A }}\left(\mathrm{T}_{\mathrm{f}}\right)\right)=3.391 \times 10^{-3} \\
& \text { 2. The transient heating of a cylinder can be solved } \\
& \text { under the single-term approximation (to be checked } \\
& \text { later) }
\end{aligned}
$$ later)

$$
\begin{equation*}
\lambda_{1} \cdot \frac{\mathrm{~J}_{1}\left(\lambda_{1}\right)}{\mathrm{J}_{0}\left(\lambda_{1}\right)}=\frac{\mathrm{h} \cdot \mathrm{R}}{\mathrm{k}} \tag{1}
\end{equation*}
$$

(2) $\quad A_{1}=\frac{2}{\lambda_{1}} \cdot \frac{J_{1}\left(\lambda_{1}\right)}{J_{1}\left(\lambda_{1}\right)^{2}+J_{0}\left(\lambda_{1}\right)^{2}}$

$$
\begin{equation*}
\theta_{A}=\theta(t, r=0)=A_{1} \cdot J_{0}\left(\lambda_{1} \cdot 0\right) \cdot \exp \left(-\lambda_{1}{ }^{2} \cdot \tau\right)=A_{1} \cdot J_{0}\left(\lambda_{1} \cdot 0\right) \cdot \exp \left(-\lambda_{1}{ }^{2} \cdot \frac{\mathrm{k}}{\rho \mathrm{C}_{\mathrm{P}}} \cdot \frac{\mathrm{t}}{\mathrm{R}^{2}}\right) \tag{3}
\end{equation*}
$$

from (1)

$$
\begin{equation*}
\mathrm{k}=\frac{\mathrm{h} \cdot \mathrm{R} \cdot \mathrm{~J}_{0}\left(\lambda_{1}\right)}{\lambda_{1} \cdot \mathrm{~J}_{1}\left(\lambda_{1}\right)} \tag{1'}
\end{equation*}
$$

substituting (1') and (2) in (3), one equation (3') in one unknown ($\lambda .1$) is obtained

$$
\begin{aligned}
& \theta_{\mathrm{A}}=\frac{2}{\lambda_{1}} \cdot \frac{\mathrm{~J}_{1}\left(\lambda_{1}\right)}{\mathrm{J}_{1}\left(\lambda_{1}\right)^{2}+\mathrm{J}_{0}\left(\lambda_{1}\right)^{2}} \cdot \mathrm{~J}_{0}\left(\lambda_{1} \cdot 0\right) \cdot \exp \left(-\lambda_{1}{ }^{2} \cdot \frac{\mathrm{~h} \cdot \mathrm{R} \cdot \mathrm{~J}_{0}\left(\lambda_{1}\right)}{\lambda_{1} \cdot \mathrm{~J}_{1}\left(\lambda_{1}\right)} \cdot \frac{1}{\rho \mathrm{C}_{\mathrm{P}}} \cdot \frac{\mathrm{t}}{\mathrm{R}^{2}}\right) \quad\left(3^{\prime}\right) \\
& \lambda_{1}:=1 \quad \text { Given } \quad \theta_{\mathrm{A}}=\frac{2}{\lambda_{1}} \cdot \frac{\mathrm{~J} 1\left(\lambda_{1}\right)}{\mathrm{J} 1\left(\lambda_{1}\right)^{2}+\mathrm{J} 0\left(\lambda_{1}\right)^{2}} \cdot \mathrm{~J} 0\left(\lambda_{1} \cdot 0\right) \cdot \exp \left(-\lambda_{1}{ }^{2} \cdot \frac{\mathrm{~h} \cdot \mathrm{R} \cdot \mathrm{~J} 0\left(\lambda_{1}\right)}{\lambda_{1} \cdot \mathrm{~J} 1\left(\lambda_{1}\right)} \cdot \frac{1}{\rho \mathrm{C}_{\mathrm{P}}} \cdot \frac{\mathrm{t}}{\mathrm{R}^{2}}\right) \\
& \qquad \lambda_{1}:=\operatorname{Minerr}\left(\lambda_{1}\right)=1.144 \\
& \text { Then, the thermal conductivity could be calculated by eq. (1') } \quad \mathrm{k}:=\frac{\mathrm{h} \cdot \mathrm{R} \cdot \mathrm{~J} 0\left(\lambda_{1}\right)}{\lambda_{1} \cdot \mathrm{JJ}\left(\lambda_{1}\right)}=2.209 \cdot \frac{\mathrm{~W}}{\mathrm{~m} \cdot \mathrm{~K}}
\end{aligned}
$$

Biot's number $\quad \mathrm{N}_{\mathrm{Bi}}:=\frac{\mathrm{h} \cdot \mathrm{R}}{\mathrm{k}}=0.792$
Fourier's number $\quad \tau:=\frac{\mathrm{k}}{\rho \mathrm{C}_{\mathrm{P}}} \cdot \frac{\mathrm{t}}{\mathrm{R}^{2}}=0.265 \quad$ being higher than 0.2 , the single-term approximation holds.
3. To calculate the surface temperature, apply the single-term approximation for a long cylinder at the surface ($\xi=1$)

$$
\begin{aligned}
& \theta_{\mathrm{S}}:=\frac{2}{\lambda_{1}} \cdot \frac{\mathrm{~J} 1\left(\lambda_{1}\right)}{\mathrm{J} 1\left(\lambda_{1}\right)^{2}+\mathrm{J} 0\left(\lambda_{1}\right)^{2}} \cdot \mathrm{~J} 0\left(\lambda_{1} \cdot 1\right) \cdot \exp \left(-\lambda_{1}{ }^{2} \cdot \tau\right)=0.578 \\
& \mathrm{~T}_{\mathrm{S}}:=\mathrm{T}_{\mathrm{inf}}+\left(\mathrm{T}_{0}-\mathrm{T}_{\mathrm{inf}}\right) \cdot \theta_{\mathrm{S}}=66.193 \cdot{ }^{\circ} \mathrm{C}
\end{aligned}
$$

