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Problem	1.	A	power‐law	 fluid	 with	 constant	 fluid	properties,	 ,	 ,	 	 flows	 through	a	 tapered	 tube	with	

circular	cross‐section,	for	which	the	tube	radius	changes	linearly	from	 	at	the	tube	entrance	to	a	slightly	

smaller	value	 	at	the	tube	exit.		

1. Applying	 locally	 the	 result	 obtained	 for	 a	 circular	 tube	 eq.	 8.3‐9 ,	 write	 the	 proper	 differential	

equation	in	d d⁄ ;	

2. Integrate	the	equation	obtained	in	1.	in	order	to	get	the	pressure	gradient;	

3. Compare	 the	mass	 flow	 rate	obtainable	 for	 the	power‐law	 fluid	and	 for	an	 incompressible	 fluid	of	

constant	properties	 ,	 ,	flowing	in	the	same	tube	in	presence	of	the	same	pressure	gradient	 the	

solution	for	incompressible	Newtonian	fluid	is	given	by	eq.	2B.10‐3 .	

Data.		 	 	10	m,	 	 	1000	kg/m3,	 	 	0.2	Pa∙s ,	 	 	0.85,	 	 	10	cm,	 	 	9	cm,	∆ ⁄ 	 	1.4	bar/m,	
	 	0.2	Pa∙s.	
	

	

	

Problem	2.	A	piece	of	foodstuff	shaped	as	a	long	cylinder	with	radius	 	and	constant	properties	 ,	 	was	

taken	from	a	fridge	with	an	initial	uniform	temperature	 ,	and	it	was	heated	by	hot	air	at	temperature	 ,	

flowing	orthogonally	to	the	cylinder	axis,	with	velocity	 .	Under	these	conditions,	the	Churchill	&	Bernstein	

correlation	 holds,	 and	 the	 interphase	 heat	 transfer	 coefficient	 has	 the	 value	 .	 After	 a	 time	 ∗,	 the	 axial	

temperature	of	the	foodstuff	was	measured	to	be	 .	Calculate:	

1. the	value	of	air	velocity,	 ;	

2. the	foodstuff	thermal	conductivity,	 ;	

3. the	surface	temperature	after	the	time	 ∗,	 ∗, .	

The	Churchill	and	Bernstein	correlation	is	 D	being	the	cylinder	diameter :	
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The	air	properties	could	be	taken	as	constants	on	their	initial	values.	

Data.	 	 	5	cm,	 	 	6.0	MJ/ m3K ,	 	 	5°C,	 	 	150°C,	 	 	35	W/ m2K ,	 ∗	 	0.5	hr,	 	 	30°C.	
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1. The Churchill & Bernstein correlation has to be solved iteratively in the unknown v.inf

Tf
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2. The transient heating of a cylinder can be solved
under the single-term approximation (to be checked
later)
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substituting (1') and (2) in (3), one equation (3') in one unknown (λ.1) is obtained
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Then, the thermal conductivity could be calculated by eq. (1') k
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 0.265 being higher than 0.2, the single-term approximation holds.
Fourier's number

3. To calculate the surface temperature, apply the single-term approximation for a long cylinder at the surface (ξ = 1)
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