Analisi dell'effetto della concentrazione di principio attivo sul comportamento di matrici a base di idrogeli

Ubaldo Fierro

Ubaldo Fierro

UNIVERSITÀ DEGLI STUDI DI SALERNO

Facoltà di Ingegneria Dipartimento di Ingegneria Industriale

Corso di Laurea in Ingegneria Chimica

Analisi dell'effetto della concentrazione di principio attivo sul comportamento di matrici a base di idrogeli

Tesi in Principi di Ingegneria Chimica

Relatori:

Prof. Ing. Giuseppe Titomanlio

Prof. Ing. Gaetano Lamberti

Correlatore:

Ing. Sara Cascone

Anno Accademico 2013/2014

Candidato:

Ubaldo Fierro

0622200082

Alla mia famiglia

Questo testo è stato stampato in proprio, in Times New Roman

La data prevista per la discussione della tesi è il 30/04/2014 Fisciano, 22/04/1014

Sommario

Sommario	I
Indice delle figure	VII
Indice delle tabelle	XIII
Abstract	XVII
Introduzione	1
1.1 Le formulazioni farmaceutiche	2
1.2 La farmacocinetica	2
1.3 Le vie di somministrazione dei farmaci	3
1.4 La finestra terapeutica	5
1.5 Il rilascio controllato dei farmaci.	6
1.5.1 I sistemi di rilascio dei farmaci.	6
1.5.2 Sistemi a rilascio controllato basati su matrici di idrogeli.	8
1.5.3 I meccanismi di rilascio di principio attivo da matrici di idrogeli.	10
1.6 Obiettivi	_ 13
Stato dell'arte	15
2.1 Analisi dell'immagine	16
2.2 Analisi dell'immagine e test meccanici	18
2.3 Metodo gravimetrico	22
2.4 Dal metodo gravimetrico al metodo meccanico	24

Materiali, apparecchiature e metodi	
3.1 Materiali	28
3.1.1 Teofillina	28
3.1.2 Idrossipropilmetilcellulosa (HPMC)	29
3.1.3 Mezzi di dissoluzione	30
3.2 Apparecchiature	31
3.2.1 Pasticcatrice Specac PN3000	31
3.2.2 Dissolutore	31
2.2.3 HPLC	32
3.2.4 Texture Analyzer	33
3.3 Metodi	34
3.3.1 Preparazione delle forme farmaceutiche	34
3.3.2 Preparazione del sistema a rilascio semioverall	35
3.3.3 Preparazione del sistema a rilascio radiale	36
3.3.4 Analisi HPLC per la valutazione del rilascio di teofillina	37
3.3.5 Analisi gravimetrica: sistemi semi-overall	39
3.3.6 Analisi gravimetrica: sistemi radiali	41
3.3.7 Analisi meccanica con Texture Analyzer	43
3.3.8 Analisi della dimensione della compressa.	46
Modellazione	47
4.1 Modellazione sistema semi-overall	48
4.1.1 Il dominio	48
4.1.2 Equazioni di bilancio	49
4.1.3 La modellazione dei fenomeni di swelling ed erosione	51
4.1.4 Le velocità di swelling (v_{swe}) e di erosione (v_{eros})	51
4.1.5 La risoluzione del modello	53
4.2 Modellazione sistema radiale	56
Risultati e discussione: parte sperimentale	57
5.1 Sistemi radiali HPMC puro: analisi gravimetrica	58
5.1.1 Tempo immersione 24 ore	58

5.1.2 Tempo immersione 48 ore	60
5.1.3 Tempo immersione 72 ore	61
5.1.4 Tempo immersione 96 ore	62
5.1.5 Confronto tra i differenti tempi di immersione	63
5.2 Sistemi radiali HPMC puro: analisi delle dimensioni	_ 65
5.3 Sistemi radiali HPMC puro: analisi meccanica	_ 66
5.3.1 Tempo immersione 24 ore	67
5.3.2 Tempo immersione 48 ore	68
5.3.3 Tempo immersione 72 ore	69
5.3.4 Tempo immersione 96 ore	70
5.3.5 Confronto tra i differenti tempi di immersione	71
5.4 Sistemi radiali 50% wt TP: analisi gravimetrica	_ 77
5.4.1 Tempo immersione 24 ore	78
5.4.2 Tempo immersione 48 ore	79
5.4.3 Tempo immersione 72 ore	80
5.4.4 Tempo immersione 96 ore	81
5.4.5 Confronto tra i differenti tempi di immersione	82
5.5 Sistemi radiali 50% wt TP: analisi delle dimensioni	_ 85
5.6 Sistemi radiali 50% wt TP: analisi meccanica	86
5.6.1 Tempo immersione 24 ore	86
5.6.2 Tempo immersione 48 ore	87
5.6.3 Tempo immersione 72 ore	89
5.6.4 Tempo immersione 96 ore	90
5.6.5 Confronto tra i differenti tempi di immersione	90
5.7 Confronto sistemi radiali 0-50% wt TP: analisi gravimetrica	_ 94
5.8 Confronto sistemi radiali 0-50% wt TP: analisi meccanica	_ 97
5.9 Confronto sistemi radiali 0-50% wt TP: analisi delle dimensioni	_ 99
5.10 Sistemi semi-overall HPMC puro: analisi gravimetrica	100

5.11 Sistemi semi-overall HPMC puro: analisi delle dimensioni	_ 102
5.12 Sistemi semi-overall HPMC puro: analisi meccanica	_ 104
5.12.1 Tempo immersione 2 ore	105
5.12.2 Tempo immersione 3 ore	105
5.12.3 Tempo immersione 4 ore	106
5.12.4 Tempo immersione 6 ore	107
5.12.5 Tempo immersione 8 ore	107
5.13 Sistemi semi-overall 50% HPMC: analisi gravimetrica	_ 108
5.14 Sistemi semi-overall 50% wt TP: analisi delle dimensioni	_ 112
5.15 Sistemi semi-overall 50% wt TP: analisi meccanica	_ 114
5.15.1 Tempo immersione 2 ore	114
5.15.2 Tempo immersione 3 ore	115
5.15.3 Tempo immersione 4 ore	116
5.15.4 Tempo immersione 6 ore	116
5.15.5 Tempo immersione 8 ore	117
5.16 Confronto sistemi semi-overall 0-50% wt TP: analisi gravimetrica	_ 118
5.17 Confronto sistemi semi-overall 0-50% wt TP: analisi meccanica	_ 118
5.18 Confronto sistemi semi-overall 0-50% wt TP: analisi delle dimensioni	_ 122
Risultati e discussione: parte modellistica	1
6.1 Sistemi 50% wt TP	_ 126
6.1.1 Sistemi radiali 50% wt TP	127
6.1.2 Sistemi semi-overall 50% wt TP	130
6.2 Sistemi HPMC puro	_ 134
6.2.1 Sistema radiale HPMC puro	134

Sommario e indici.	Pag. V
Bibliografia	143

Indice delle figure

Figura 1. Le differenti branche della farmacologia	2
Figura 2. Le fasi della farmacocinetica [1]	3
Figura 3. Le vie di somministrazione dei farmaci [1]	4
Figura 4. Le fasi dell'assunzione orale dei farmaci	5
Figura 5. La finestra terapeutica	6
Figura 6. Sistema a rilascio ripetuto	7
Figura 7. Rilascio controllato nel tempo di principio attivo	7
Figura 8. Confronto tra i differenti sistemi di rilascio.	8
Figura 9. Rigonfiamento di un idrogelo	9
Figura 10. Sistema a serbatoio (a), sistema a matrice (b).	10
Figura 11. Schema di una matrice idrogelica	11
Figura 12. Rappresentazione di un sistema di tipo radiale in cui lo scambio avviene solo lungo le superfici laterali della compressa	12
Figura 13. Rappresentazione dello swelling di una compressa in un sistema di tipo overall	12
Figura 14. Spessore del layer di gel. Percentuali BPP: (\circ) 10%, (\Box) 20%, (Δ) 30%, (\bullet) 40%, (\blacksquare) 60% and (Δ) 80%	17
Figura 15. Layer di gel di farmaco. Percentuali BPP: (\circ) 10%, (\Box) 20%, (Δ) 30%, (\bullet) 40%, (\blacksquare) 60% and (\blacktriangle) 80%	18
Figura 16. Altezza raggiunta dalla compressa: MHEC 3000 B No. 1 (■); MHEC 10000 B No. 1 (●); MHPC 100000 (◊); Pharmacoat 606 (▲)	19
Figura 17. Tipico profilo della forza di penetrazione per compresse rigonfiate e compresse non idratate su una matrice polimerica di MHPMC 100000	20
Figura 18. Influenza della solubilità del farmaco	21
Figura 19. Frazione massica acqua lungo il raggio delle compresse.	23
Figura 20. Lavoro di penetrazione vs raggio compressa.	24

Figura 21. Contenuto d'acqua vs raggio	25
Figura 22. Contenuto d'acqua vs lavoro di penetrazione	26
23. Struttura chimica della teofillina	28
Figura 24. Struttura chimica dell'HPMC.	29
Figura 25. Immagine di una pasticcatrice Specac	31
Figura 26. Immagine del dissolutore Sotax AT7 Smart System	32
Figura 27. Immagine dell'HPLC.	32
Figura 28. Immagine del Texture Analyzer.	34
Figura 29. Prova semioverall in un vessel del dissolutore Sotax	36
Figura 30. Sistema per il rilascio radiale	36
Figura 31.Tipico cromatogramma di un sistema HPLC-TP	38
Figura 32. Retta di taratura della teofillina	39
Figura 33. Rimozione del vetrino superiore	41
Figura 34. La punzonatura	42
Figura 35. Immagine della lastra di policarbonato con micro tavolo traslatore, a sinistra, ed esempio di una compressa che mostra la distanza con cui sono stati effettuati i fori, a destra	44
Figura 36. Tipico diagramma forza contro spostamento per sistemi semi-overall (a sinistra) e radiali (a destra)	45
Figura 37. Percentuale d' acqua contro lo spostamento	46
Figura 38. Dominio del sistema.	49
Figura 39. Elemento di volume $A\Delta x$.	52
Figura 40. Mesh impiegata per la risoluzione del problema in esame	53
Figura 41. Andamento delle frazioni massiche contro il raggio della compressa dopo 24 ore di immersione (sistema HPMC puro)	59
Figura 42. Andamento delle frazioni massiche contro il raggio della compressa dopo 48 ore di immersione (sistema HPMC puro).	60
Figura 43. Andamento delle frazioni massiche contro il raggio della compressa dopo 96 ore di immersione (sistema HPMC puro)	61
Figura 44. Andamento delle frazioni massiche contro il raggio della compressa dopo 96 ore di immersione (sistema HPMC puro)	62
Figura 45. Assorbimento totale d'acqua e polimero residuo al variare del tempo di immersione (sistema HPMC puro)	63
Figura 46. Frazione massica d'acqua al variare del raggio per i differenti tempi di immersione (sistema HPMC puro)	64

Figura 47. Frazione massica di polimero al variare del raggio per i differenti tempi di immersione (sistema HPMC puro)65
Figura 48. Diametro compresse al variare del tempo
Figura 49. Diagramma forza-spostamento dopo 24 ore di immersione (sistema HPMC puro)
Figura 50. Diagramma forza-spostamento dopo 48 ore di immersione (sistema HPMC puro)69
Figura 51. Diagramma forza-spostamento dopo 72 ore di immersione (sistema HPMC puro)70
Figura 52. Diagramma forza-spostamento dopo 96 ore di immersione (sistema HPMC puro)71
Figura 53. Fitting lineare dei dati % wt/wt Acqua in funzione del Log (dF/dS) [16]73
Figura 54. Fitting dei dati gravimetrici con funzione sigmoidea di tipo Boltzmann
Figura 55. Sovrapposizione dei dati % wt/wt Acqua in funzione del Log (dF/dS) per sistema HPMC puro (sperimentale) e di letteratura75
Figura 56. Diagramma % acqua-spostemento per i differenti tempi considerati (sistema HPMC puro)
Figura 57. Andamento delle frazioni massiche contro il raggio della compressa dopo 24 ore di immersione (sistema 50/50 % wt/wt TP/HPMC)78
Figura 58.Andamento delle frazioni massiche contro il raggio della compressa dopo 48 ore di immersione (sistema 50/50 % wt/wt TP/HPMC)80
Figura 59. Andamento delle frazioni massiche contro il raggio della compressa dopo 72 ore di immersione (sistema 50/50 % wt/wt TP/HPMC)81
Figura 60. Andamento delle frazioni massiche contro il raggio della compressa dopo 96 ore di immersione (sistema 50/50 % wt/wt TP/HPMC)82
Figura 61. Acqua totale assorbita, polimero e farmaco residuo al variare del tempo di immersione
Figura 62. Frazione massica d'acqua al variare del raggio per i differenti tempi di immersione (sistema 50/50 % wt/wt TP/HPMC)
Figura 63. Frazione massica polimero al variare del raggio per i differenti tempi di immersione (sistema 50/50 % wt/wt TP/HPMC)
Figura 64. Frazione massica di farmaco al variare del raggio per i differenti tempi di immersione (sistema 50/50 % wt/wt TP/HPMC)85
Figura 65. Diametro compresse al variare del tempo (50/50 % wt/wt TP/HPMC)
Figura 66. Diagramma forza-spostamento dopo 24 ore di immersione (sistema 50/50 % wt/wt TP/HPMC)

Figura 67. Diagramma forza-spostamento dopo 48 ore di immersione (sistema 50/50 % wt/wt TP/HPMC)
Figura 68. Diagramma forza-spostamento dopo 72 ore di immersione (sistema 50/50 % wt/wt TP/HPMC)
Figura 69. Diagramma forza-spostamento dopo 96 ore di immersione (sistema 50/50 % wt/wt TP/HPMC)
Figura 70. Fitting dei dati gravimetrici con funzione sigmoidea di tipo Boltzmann per sistema 50% wt TP92
Figura 71. Sovrapposizione dei dati % wt/wt Acqua in funzione del Log (dF/dS) per sistema 50% wt TP (sperimentale) e di letteratura92
Figura 72. Diagramma % acqua-spostemento per i differenti tempi considerati (sistema 50/50 % wt/wt TP/HPMC)94
Figura 73. Confronto acqua assorbita-tempo per i sistemi a differente concentrazione95
Figura 74. Confronto polimero restante normalizzato-tempo per i sistemi a differente concentrazione
Figura 75. Diagramma confronto alle differenti concentrazioni di HPMC % acqua-raggio compressa ai differenti tempi di immersione
Figura 76. Confronto diametri compresse per i differenti sistemi analizzati100
Figura 77. Acqua totale assorbita (sistema HPMC puro)101
Figura 78. Diagramma polimero residuo-tempo (sistema HPMC puro)102
Figura 79. Diagramma diametro-tempo per sistema semi-overall di solo polimero
Figura 80. Diagramma altezza-tempo per sistema semi-overall di solo polimero. 104
Figura 81. Diagrammi acua-forza-spostamento dopo 2 ore di immersione (sistema HPMC puro): (a) forza-spostamento, (b) acqua-spostamento105
Figura 82. Diagrammi acua-forza-spostamento dopo 3 ore di immersione (sistema HPMC puro): (a) forza-spostamento, (b) acqua-spostamento106
Figura 83. Diagrammi acua-forza-spostamento dopo 4 ore di immersione (sistema HPMC puro): (a) forza-spostamento, (b) acqua-spostamento106
Figura 84. Diagrammi acua-forza-spostamento dopo 6 ore di immersione (sistema HPMC puro): (a) forza-spostamento, (b) acqua-spostamento107
Figura 85. Diagrammi acua-forza-spostamento dopo 8 ore di immersione (sistema HPMC puro): (a) forza-spostamento, (b) acqua-spostamento108
Figura 86. Diagramma acqua assorbita-tempo (sistema 50/50 TP/HPMC)109
Figura 87. Rilacio di teofillina per sistema semi-overall 50/50 % wt/wt TP/HPMC110

Figura 88. Farmaco residuo teorico ed effettivo al variare del tempo di immersione
Figura 89. Polimero residuo al variare del tempo112
Figura 90. Diametro compressa al variare del tempo (sistema 50/50 % wt/wt TP/HPMC)113
Figura 91. Diagramma altezza-tempo per sistema semi-overall 50/50 % wt/wt TP/HPMC
Figura 92. Diagrammi acua-forza-spostamento dopo 2 ore di immersione (sistema 50/50 % wt/wt TP/HPMC): (a) forza-spostamento, (b) acqua- spostamento115
Figura 93. Diagrammi acua-forza-spostamento dopo 3 ore di immersione (sistema 50/50 % wt/wt TP/HPMC): (a) forza-spostamento, (b) acqua- spostamento
Figura 94. Diagrammi acua-forza-spostamento dopo 4 ore di immersione (sistema 50/50 % wt/wt TP/HPMC): (a) forza-spostamento, (b) acqua- spostamento
Figura 95. Diagrammi acua-forza-spostamento dopo 6 ore di immersione (sistema 50/50 % wt/wt TP/HPMC): (a) forza-spostamento, (b) acqua- spostamento
Figura 96. Diagrammi acua-forza-spostamento dopo 8 ore di immersione (sistema 50/50 % wt/wt TP/HPMC): (a) forza-spostamento, (b) acqua- spostamento
Figura 97. Confronta tra l'acqua assorbita al variare del tempo per i sistemi semi-overall osservati118
Figura 98. Percentuale acqua in funzione dello spostamento a differente concentrazione TP al centro delle compresse119
Figura 99. Percentuale acqua in funzione dello spostamento a differente concentrazione TP al raggio di 2 mm120
Figura 100. Percentuale acqua in funzione dello spostamento a differente concentrazione TP al raggio di 4 mm121
Figura 101. Confronto tra i diametri delle compresse per i due sistemi analizzati122
Figura 102. Confronto tra le altezze delle compresse per i due sistemi analizzati123
Figura 103. Andamento masse totali farmaco, polimero ed acqua al variare del tempo (sistema radiale 50% wt TP): confronto dati sperimentali (exp) e curva di modello (modello)
Figura 104. Rilascio TP al variare del tempo (sistema radiale 50% wt TP)128
Figura 105. Frazioni massiche percentuali di farmaco, polimero ed acqua al variare del raggio (sistemi radiali 50% wt TP): (a) 24h, (b) 48h, (c) 72h, (d) 96h129

Figura 106. Diametro compressa al variare del tempo (sistemi radiali 50% wt TP)	130
Figura 107. Masse residue di farmaco e polimero, ed acqua assorbita al variare del tempo (sistema semi-overall 50% wt TP).	131
Figura 108. Rilascio TP al variare del tempo (sistema semi-overall 50% wt TP)	131
Figura 109. Countor plot 2h sistema semi-overall 50% wt TP	132
Figura 110. Countor plot 3h sistema semi-overall 50% wt TP	132
Figura 111. Countor plot 4h sistema semi-overall 50% wt TP	133
Figura 112. Countor plot 6h sistema semi-overall 50% wt TP	133
Figura 113. Countor plot 8h sistema semi-overall 50% wt TP	133
Figura 114. Diametro (a) ed altezza (b) al variare del tempo.	134
Figura 115. Massa totale di polimero e acqua nella compressa al variare del tempo (sistemi radiali HPMC puro).	136
Figura 116. Frazioni massiche percentuali di farmaco, polimero e acqua al variare del raggio (sistemi radiali HPMC puro): (a) 24h, (b) 48h, (c) 72h, (d) 96h	137
Figura 117. Diametro compressa al variare del tempo (sistemi radiali HPMC puro)	138

Indice delle tabelle

Tabella 1. Valori di a ₁ , a ₂ , a ₃	26
Tabella 2. Proprietà chimico-fisiche della teofillina	29
Tabella 3. Proprietà chimico-fisiche dell' HPMC K15M	30
In questo lavoro di tesi sono stati considerati due sistemi di rilascio (semi- overall e radiale) e due distinte frazioni di principio attivo nelle compresse (0% wt e 50% wt) (tabella 4)	34
Tabella 5. Differenti formulazioni impiegate nelle compresse	35
Tabella 6. Parametri operativi dell' HPLC.	37
Tabella 7. Valori assunti dalla costante di taratura per i differenti mezzi	39
Tabella 8. Condizioni operative dissolutore	40
Tabella 9. Fasi del metodo gravimetrico.	41
Tabella 10. Procedura sperimentale sistemi radiali	43
Tabella 11. Parametri operativi del texture	44
Tabella 12. Paramentri modello	55
Tabella 13. Andamento delle frazioni massiche contro il raggio della compressa dopo 24 ore di immersione.	59
Tabella 14. Andamento delle frazioni massiche contro il raggio della compressa dopo 48 ore di immersione.	60
Tabella 15. Andamento delle frazioni massiche contro il raggio della compressa dopo 96 ore di immersione.	62
Tabella 16. Andamento delle frazioni massiche contro il raggio della compressa dopo 96 ore di immersione.	63
Tabella 17. Assorbimento totale d'acqua e polimero residuo al variare del tempo di immersione.	64
Tabella 18. Diametro compresse al variare del tempo	66
Tabella 19. dF/dS in funzione del raggio di penetrazione dopo 24 ore (sistema HPMC puro).	68

Tabella 20. dF/dS in funzione del raggio di penetrazione dopo 48 ore (sistema HPMC puro)	69
Tabella 21. dF/dS in funzione del raggio di penetrazione dopo 72 ore (sistema HPMC puro)	70
Tabella 22. dF/dS in funzione del raggio di penetrazione dopo 96ore (sistema HPMC puro)	71
Tabella 23. dF/dS in funzione del raggio di penetrazione per i differenti tempi di immersione considerati (sistema radiale HPMC puro)	72
Tabella 24. Parametri di fitting per l'equazione 3 da letteratura [16]	73
Tabella 25. Confronto tra la percentuale d'acqua ottenuta con analisi gravimetrica e ad al Texture Analyzer	76
Tabella 26. % acqua-raggio compressa per i differenti tempi di immersione	77
Tabella 27. Andamento delle frazioni massiche contro il raggio della compressa dopo 24 ore di immersione (sistema 50/50 % wt/wt TP/HPMC)	79
Tabella 28. Andamento delle frazioni massiche contro il raggio della compressa dopo 48 ore di immersione (sistema 50/50 % wt/wt TP/HPMC)	80
Tabella 29. Andamento delle frazioni massiche contro il raggio della compressa dopo 72 ore di immersione (sistema 50/50 % wt/wt TP/HPMC)	81
Tabella 30. Andamento delle frazioni massiche contro il raggio della compressa dopo 96 ore di immersione (sistema 50/50 % wt/wt TP/HPMC)	82
Tabella 31. Acqua totale assorbita, polimero e farmaco residuo al variare del tempo di immersione.	83
Tabella 32. Diametro compresse al variare del tempo (50/50 % wt/wt TP/HPMC)	86
Tabella 33. dF/dS in funzione del raggio di penetrazione dopo 24 ore (sistema 50% wt TP)	87
Tabella 34. dF/dS in funzione del raggio di penetrazione dopo 48 ore (sistema 50% wt TP)	88
Tabella 35. dF/dS in funzione del raggio di penetrazione dopo 72 ore (sistema 50% wt TP)	89
Tabella 36. dF/dS in funzione del raggio di penetrazione dopo 96 ore (sistema 50% wt TP)	90
Tabella 37. dF/dS in funzione del raggio di penetrazione per i differenti tempi di immersione considerati (sistema radiale 50% wt Tp)	91
Tabella 38. Confronto tra la percentuale d'acqua ottenuta con analisi gravimetrica e ad al Texture Analyzer (sistema (50% wt TP)	93
Tabella 39. % acqua-raggio compressa per i differenti tempi di immersione	94

Tabella 40. Confronto acqua assorbita-tempo per i sistemi a differente concentrazione.
Tabella 41. Polimero restante normalizzato-tempo HPMC puro96
Tabella 42. Polimero restante normalizzato-tempo 50/50 % wt/wt TP/HPMC96
Tabella 43. Confronto dei valori di dF/dS al variare del tempo e del carico di TP97
Tabella 44. Confronto % acqua HPMC puro e 50% wt TP in funzione del raggioal variare del tempo di immersione (dati Texture Analyzer)
Tabella 45. Confronto diametri compresse per i differenti sistemi analizzati100
Tabella 46. Acqua totale assorbita (sistema HPMC puro). 101
Tabella 47. Diagramma polimero residuo-tempo (sistema HPMC puro)102
Tabella 48. Diametro-tempo per sistema semi-overall di solo polimero103
Tabella 49. Altezza-tempo per sistema semi-overall di solo polimero104
Tabella 50. Acqua assorbita-tempo (sistema 50/50 TP/HPMC)109
Tabella 51. Rilacio di teofillina per sistema semi-overall 50/50 % wt/wt TP/HPMC110
Tabella 52. Polimero residuo al variare del tempo112
Tabella 53. Diametro compressa al variare del tempo (sistema 50/50 % wt/wt TP/HPMC)113
Tabella 54. Altezza-tempo per sistema semi-overall overall 50/50 % wt/wt TP/HPMC
Tabella 55. Confronto tra i diametri delle compresse per i due sistemi analizzati123
Tabella 56. Confronto tra le altezze delle compresse per i due sistemi analizzati124
Tabella 57. Parametri modello 50% wt TP127
Tabella 58. Parametri modello radiale HPMC puro135

Abstract

In this work drug controlled release systems have been studied. The drug release, the swelling and erosion phenomena of hydrogels-based matrices have been analyzed by gravimetric method and mechanical analysis. The experimental tests have been carried out using tablets composed by theophylline (as drug) and HPMC K15M (as hydrogel) in systems such as: 0/100% wt/wt TP/HPMC and 50/50% wt/wt TP/HPMC. Their preparation has been performed by compression using a tableting machine and an oil press after the mixing of the drug and polymer powders.

Two types of systems have been analyzed: radial and semi-overall.

In the radial systems phenomena of swelling, erosion and diffusion of drug take place only along the radius of the tablet. For this reason, the tablet has been inserted between two square parallel slides. To ensure the complete stability of the sample, the two glass have been pinched with plastic ties, so their distance is exactly equal to the thickness of the tablet. In this way it has been guaranteed a mass exchange only along the radius.

In the semi-overall systems these phenomena involve all tablet surface. In this case the tablet has been placed at the center of a square slide using double-sided tape. The slide represents a symmetry plane, in fact, the overall system can be obtained considering the half mirror of system.

The two kinds of systems have been immersed in a dissolution medium, thermostated at $37^{\circ}C$ (USP 2 apparatus), to simulate the gastrointestinal environment. In fact, for the first two hours (mean transit time in the stomach), has been used an acid solution (pH=1). After this time, the pH has been neutralized by adding a saline solution to simulate the intestinal tract. The immersion times for radial systems were considered 24, 48, 72, 96 hours, instead for systems semi- overall 2, 3, 4, 6, 8 and 24 hours.

The gravimetric analysis allowed the quantification of tablets hydration by weighing the systems pre-immersion and postimmersion. The release of drug has been evaluated by HPLC. For radial systems the tablets have been punched by suitable punches because of the interest to know the mass fractions of water, polymer and drug remaining inside the tablet as a function of radius.

Gravimetric analysis showed for both the delivery systems that increasing immersion time there is an increase of the water uptake. This phenomenon was more pronounced for systems that have a higher concentration of polymer. Even the release of the drug presented an increasing trend over time for both systems considered.

The erosion of polymer in semi-overall systems was found to be negligible after the first 8 hours of immersion, most marked after 24 hours for both compositions considered.

The mechanical analysis has been performed using a Texture Analyzer. The tablets, taken from the dissolution medium, have been penetrated by a probe. In this way it was possible to estimate the variation of the tablets mechanical properties at different immersion time, and then the water uptake. The force required for the tablets penetration has been correlated to the water content, combining the results obtained from the gravimetric analysis with the mechanical one. The penetration forces increase with the water uptake. These values were found in the tablets inner sections, generally between 0-4 mm from the center (moving in the radial direction).

The tablet radius and the height, reached at the end of the set times, were measured from the pictures of the tablets at the end of their immersion. Using special software it was possible to determine these values. Increasing the initial polymer concentration, the tablet dimensions showed a more marked growth.

In addition, a mathematical model was proposed and optimized to reproduce concentration profiles of the tablets and the phenomena of release, swelling and erosion for the systems analyzed.

Bibliografia

- 1. R.D. Howland, M.J. Mycek, Le basi della farmacologia, Zanichelli (2007).
- 2. Siepmann, J., & Peppas, N., Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). *Advanced Drug Delivery* Reviews, 48 (2–3), 139–157 (2001).
- 3. Barba, A. A., d'Amore, M., Chirico, S., Lamberti, G., & Titomanlio, G., Swelling of cellulose derivative (HPMC) matrix systems for drug delivery. *Carbohydrate Polymers*, 78 (3), 469–474 (2009).
- 4. Colombo, P., Bettini, R., & Peppas, N. A., Observation of swelling process and diffusion front position during swelling in hydroxypropyl methyl cellulose (HPMC) matrices containing a soluble drug. *Journal of Controlled Release*, 61 (1), 83–91 (1999).
- 5. Chirico, S., Dalmoro, A., Lamberti, G., Russo, G., & Titomanlio, G., Analysis and modeling of swelling and erosion behavior for pure HPMC tablet. *Journal of Controlled Release*, 122 (2), 181–188 (2007).
- 6. S. Zuleger, R. Fassihi, B. C. Lippold, Polymer particle controlling erosion drug release. Swelling investigation to clarify the release mechanism, *International Journal of Pharmaceutics*, 247, 23-37 (2002).
- Lamberti G., Cascone S., Cafaro M.M., Titomanlio G., D'Amore M., Barba A.A., Measurements of water content in hydroxypropyl-methylcellulose based hydrogels via texture analysis, *Carbohydrate Polymers*, 92, 765-768 (2013).
- Kaunisto, E., Abrahmsen-Alami, S., Borgquist, P., Larsson, A., Nilsson, B., & Axelsson, A., A mechanistic modelling approach to polymer dissolution using magnetic resonance microimaging. *Journal of Controlled Release*, 147 (2), 232–241 (2010).
- 9. Kim, H., Fassihi, R., A new ternary polymeric matrix system for controlled drug delivery of highly soluble drugs: I. Diltiazem Hydrochloride. *Pharm. Res.* 14, 1415/1421 (1997).
- Mitchell, K., Ford, J.L., Armstrong, D.J., Elliott, P.N.C., Hogan, J.E., Rostron, C., The influence of substitution type on the performance of methylcellulose and hydroxypropylmethylcellulose in gels and matrices. *Int. J. Pharm.* 100, 143/154 (1993).

- Papadimitriou, L., Buckton, G., Efentakis, M., Probing the mechanism of swelling of hydroxypropylmethylcellulose matrices. *Int. J. Pharm.* 98, 57/62 (1993).
- Rajabi-Siahboomi, A.R., Bowtell, R.W., Mansfield, P., Henderson, A., Davies, M.C., Melia, C.D., Structure and behaviour in hydrophilic matrix sustained release dosage forms: 2. NMR-imaging studies of dimensional changes in the gel layer and core of HPMC tablets undergoing hydration. J. *Controlled Release* 31, 121/128 (1994).
- 13. Chirico, S., Dalmoro, A., Lamberti, G., Russo, G., & Titomanlio, G., Analysis and modeling of swelling and erosion behavior for pure HPMC tablet. *Journal of Controlled Release*, 122 (2), 181–188 (2007).
- 14. Camera-Roda, G., Sarti, G., Mass transport with relaxation in polymers. *AIChE J.* 36, 851–860 (1990).
- Michailova, V., Titeva, S., Kotsilkova, R., Krusteva, E., Minkov, E., Water uptake and relaxation processes in mixed unlimited swelling hydrogels. *Int. J. Pharm.* 209, 45–56 (2000).
- 16. Cascone S., Lamberti G., Titomanlio G., D'Amore M., Barba A.A., Measurements of non-uniform water content in hydroxypropyl-methylcellulose based matrices via texture analysis. *Carbohydrate Polymers*, 103 348-354 (2014).
- 17. Gao P., Fagerness P.E., Diffusion in HPMC Gels. Determination of drug and water diffusivity by pulsed-field-gradient spin-echo NMR. *Pharmaceutical Research*, 12, (1995).
- 18. Lamberti, G.; Galdi, I.; Barba, A.A. Controlled release from hydrogelbased solid matrices. A model accounting for water up-take, swelling and erosion, *International Journal of Pharmaceutics*, 407(1-2) 78-86 (2011).

Un ringraziamento speciale va ai miei genitori ed alle mie sorelle per essermi stati vicini in questi anni. Ai miei coinquilini Alessandro, Emilio e Gerardo con i quali ho potuto trascorrere con più leggerezza tutti gli anni universitari. Al professore Gaetano Lamberti per l'opportunità concessami ed a Sara per il suo aiuto nello sviluppo del lavoro di tesi. A tutte le persone che ho avuto modo di conoscere durante questi anni.