Approcci modellistici nella farmacocinetica MODELLI BASATI SULLA FISIOLOGIA

Michela Di Muria

UNIVERSITÀ DEGLI STUDI DI SALERNO

Facoltà di Ingegneria

Corso di Laurea in Ingegneria Chimica

Approcci Modellistici nella Farmacocinetica Modelli Basati sulla Fisiologia

Tesi in Principi di Ingegneria Chimica

Relatori:

Prof. Ing. Giuseppe Titomanlio

Candidato: Michela Di Muria matricola 0620200056

Prof. Ing. Gaetano Lamberti

Anno Accademico 2007/2008

Ai miei cari

Questo testo è stato stampato in proprio, in Times New Roman La data prevista per la discussione della tesi è il 24 novembre 2008 Fisciano, 24 ottobre 2008

Sommario

Sommario	I
Indice delle figure	III
Indice delle tabelle	VII
Introduzione	1
1.1 Generalità	2
1.2 Obiettivi	3
1.3 Processi fisiologici (ADME)	4
1.3.1 Assorbimento	4
1.3.2 Distribuzione	7
1.3.3 Metabolismo	8
1.3.4 Escrezione	10
Stato dell'arte	13
2.1 Modello sviluppato da Jain <i>et al.</i> e letteratura correlata	14
2.2 Modello ACAT sviluppato dalla Simulations Plus. Inc	
letteratura correlata	25
Modellazione	
3 1 Confronto tra gli approcci modellistici nella	
farmacocinetica	32
3.2 Basi per la sviluppo di un modello farmacocinetico basato	52
sulla figiologia	22
2.2 Sviluppo di un modello formaccoinstico hegato svilo	55
5.5 Svinuppo di un modeno farmacocinetico basato sulla	27
IISIOIOgia	31

Validazione del modello per iniezione ev	47
4.1 Simulazione dell'iniezione endovenosa di solfato di zinco	
in topi con il modello di Jain <i>et al.</i>	48
4.2 Simulazione dell'iniezione endovenosa di solfato di zinco	
in topi con il nuovo modello	56
4.3 Discussione dei risultati	61
Validazione del modello per assunzione orale	63
5.1 Valutazione dei parametri fisiologici e farmacocinetici	64
5.2 Simulazione dell'assunzione orale di coestrusi contenenti	
teofillina con il nuovo modello	68
5.3 Discussione dei risultati	74
Analisi delle capacità predittive del modello	75
6.1 Simulazione dell'assunzione orale di formulazioni di	
divalproex sodium a diverse velocità di rilascio	76
6.2 Simulazione dell'assunzione orale di formulazioni di	
diltiazem a diverse velocità di rilascio	85
6.3 Discussione dei risultati	94
Conclusioni e sviluppi futuri	97
7.1 Conclusioni e sviluppi futuri	98
Notazione	101
Sezione (1)	101
Sezione (2)	103
Sezione (3)	104
Sezione (4)	105
Bibliografia	109

Indice delle figure

Figura 1. Rappresentazione del corpo nel modello di Jain et al 14
Figura 2. Rappresentazione del corpo in un modello semplificato, ispirato a Jain
et al
Figura 3. Rappresentazione del corpo nel modello ACAT 28
Figura 4. Rappresentazione del corpo nel modello bicompartimentale per
iniezione endovenosa (a) ed assunzione orale (b)
Figura 5. Schematizzazione del sistema circolatorio del fegato e
dell'interconnessione con il tratto gastrointestinale
Figura 6. Rappresentazione del corpo nel nuovo modello basato sulla fisiologia 38
Figura 7. Rappresentazione del corpo nel nuovo modello tra t_0 e t_G
Figura 8. Rappresentazione del corpo nel nuovo modello tra $t_G e(t_G + t_{SI})$
Figura 9. Rappresentazione del corpo nel nuovo modello tra (t_G+t_{SI}) e $(t_G+t_{SI}+t_{II})$. 40
Figura 10. Dati sperimentali e profilo di concentrazione di solfato di zinco nel
plasma ottenuto con il modello di Jain <i>et al.</i>
Figura 11. Particolare dei dati sperimentali e del profilo di concentrazione di
solfato di zinco nel plasma ottenuto con il modello di Jain et al
Figura 12. Dati sperimentali e profili di concentrazione di solfato di zinco nei
reni e nella tiroide, ottenuti con il modello di Jain et al
Figura 13. Dati sperimentali e profili di concentrazione di solfato di zinco nei
globuli rossi e nella milza, ottenuti con il modello di Jain et al
Figura 14. Dati sperimentali e profili di concentrazione di solfato di zinco nel
fegato e nella pelle, ottenuti con il modello di Jain et al
Figura 15. Dati sperimentali e profili di concentrazione di solfato di zinco
nell'intestino e negli organi sessuali, ottenuti con il modello di Jain et al
Figura 16. Dati sperimentali e profili di concentrazione di solfato di zinco nel
pancreas e nella prostata, ottenuti con il modello di Jain et al
Figura 17. Dati sperimentali e profili di concentrazione di solfato di zinco nello
stomaco e nel cuore, ottenuti con il modello di Jain et al
Figura 18. Dati sperimentali e profili di concentrazione di solfato di zinco nel
midollo, nella vescica e nel cervello, ottenuti con il modello di Jain et al
Figura 19. Dati sperimentali e profili di concentrazione di solfato di zinco nelle
gonadi, nei muscoli e nel grasso, ottenuti con il modello di Jain et al
Figura 20. Dati sperimentali e profili di massa di solfato di zinco nel lume
intestinale e nelle feci e di massa nell'urina, ottenuti con il modello di Jain et al 55
Figura 21. Dati sperimentali e profilo di massa totale di solfato di zinco nel
compartimento molto perfuso e nel sistema circolatorio intestinale, ottenuto con
il nuovo modello basato sulla fisiologia

Figura 22. Dati sperimentali e profilo di massa di solfato di zinco nel	
compartimento poco perfuso, ottenuto con il nuovo modello	. 59
Figura 23. Dati sperimentali e profilo di massa di solfato di zinco nel fegato,	
ottenuto con il nuovo modello	. 60
Figura 24. Dati sperimentali e profilo di massa di solfato di zinco contenuta e	
cumulativa escreta dal lume gastrointestinale, ottenuto con il nuovo modello	. 60
Figura 25. Dati sperimentali e profili delle funzioni di <i>fitting</i> del rilascio <i>in-vitro</i>	
per un coestruso con L=1cm e per due coestrusi con L=0.5cm	. 70
Figura 26. Dati sperimentali e profili di concentrazione di teofillina nel	
compartimento molto perfuso, ottenuti con il nuovo modello	. 72
Figura 27. Profili di concentrazione di teofillina nel compartimento poco	
perfuso, ottenuti con il nuovo modello	. 72
Figura 28. Profili di concentrazione di teofillina nel fegato, ottenuti con il nuovo	
modello	.73
Figura 29. Profili di massa di teofillina nel lume gastrointestinale, ottenuti con il	
nuovo modello	.73
Figura 30. Profili di concentrazione di teofillina nel sistema circolatorio	
gastrointestinale, ottenuti con il nuovo modello	.74
Figura 31. Dati sperimentali e profili delle funzioni di <i>fitting</i> del rilascio <i>in-vitro</i>	
per le formulazioni di divalproex sodium a rilascio veloce, mediamente veloce e	
lento	. 77
Figura 32. Profili di concentrazione di divalproex sodium nel compartimento	70
molto perfuso, ottenuti con il nuovo modello (1)	. 79
Figura 33. Profili di concentrazione di divalproex sodium nel compartimento	70
poco pertuso, ottenuti con il nuovo modello (1)	. 79
Figura 34. Profili di concentrazione di divalproex sodium nel fegato, ottenuti	00
Eigure 25. Drofili di maga di divalara yi adium nal luma gastraintastinala	. 80
etteruti con il nuovo modello (1)	00
Figure 26 Profili di concentrazione di divelnecev sodium nel sistema	. 80
circolatorio gostrointestinale, ottenuti con il nuovo modello (1)	Q 1
Figure 27 Profili di concentrazione di divelnecev sodium nel compartimento	. 01
molto perfuso, ottenuti con il nuovo modello (2)	83
Figura 38 Profili di concentrazione di divalnoex sodium nel compartimento	. 05
noco perfuso, attenuti con il nuovo modello (2)	83
Figura 39 Profili di concentrazione di divalnoex sodium nel fegato, ottenuti	. 05
con il nuovo modello (2)	84
Figura 40 Profili di massa di divalproex sodium nel lume gastrointestinale	.04
ottenuti con il nuovo modello (2)	84
Figura 41 Profili di concentrazione di divalproex sodium nel sistema	
circolatorio gastrointestinale ottenuti con il nuovo modello (2)	85
Figura 42. Dati sperimentali e profili delle funzioni di <i>fitting</i> del rilascio <i>in-vitro</i>	
per le formulazioni di diltiazem a rilascio veloce, mediamente veloce e lento	. 86
Figura 43 Profili di concentrazione di diltiazem nel compartimento molto	
perfuso, ottenuti con il nuovo modello (1).	. 88
Figura 44. Profili di concentrazione di diltiazem nel compartimento poco	
perfuso, ottenuti con il nuovo modello (1)	. 89
Figura 45. Profili di concentrazione di diltiazem nel fegato, ottenuti con il nuovo	
modello (1)	. 89

Figura 46. Profili di massa di diltiazem nel lume gastrointestinale., ottenuti con	
il nuovo modello (1)	. 90
Figura 47. Profili di concentrazione di divalproex sodium nel sistema	
circolatorio gastrointestinale, ottenuti con il nuovo modello (1)	. 90
Figura 48. Profili di concentrazione di diltiazem nel compartimento molto	
perfuso, ottenuti con il nuovo modello (2)	. 92
Figura 49. Profili di concentrazione di diltiazem nel compartimento poco	
perfuso, ottenuti con il nuovo modello (2)	. 92
Figura 50. Profili di concentrazione di diltiazem nel fegato, ottenuti con il nuovo	
modello (2)	. 93
Figura 51. Profili di massa di diltiazem nel lume gastrointestinale, ottenuti con il	
nuovo modello (2)	. 93
Figura 52. Profili di concentrazione di divalproex sodium nel sistema	
circolatorio gastrointestinale, ottenuti con il nuovo modello (2)	. 94

Indice delle tabelle

Notazione

Sezione (1)

	Modello di Jain <i>et al</i>	
Simbolo	Descrizione	Unità nel SI
V _{RBC}	Volume dei globuli rossi	m^3
$C_{RBC}(t)$	Evoluzione temporale della concentrazione	kg∙m ⁻³
	totale di farmaco nei globuli rossi	
h_{RBC}	Coefficiente di trasporto di materia tra il	$m \cdot s^{-1}$
	plasma e i globuli rossi e il plasma	
R_{RBC}	Rapporto tra la concentrazione di farmaco	-
	totale e la concentrazione di farmaco libero	
	nei globuli rossi	
V_P	Volume del plasma	m ³
$C_P(t)$	Evoluzione temporale della concentrazione	kg∙m ⁻³
	totale di farmaco nel plasma	
Q_i	Portata volumetrica di plasma arterioso	$m^3 \cdot s^{-1}$
	affluente all'i-esimo tessuto o organo	
$C_i^E(t)$	Evoluzione temporale della concentrazione	kg∙m ⁻³
	totale di farmaco nella zona extracellulare	
	dell'i-esimo compartimento	
Q_P	Portata volumetrica totale di plasma arterioso	$m^3 \cdot s^{-1}$
$C_P(t)$	Evoluzione temporale della concentrazione	kg∙m ⁻³
	totale di farmaco nel plasma	
V_{GL1}	Volume del lume intestinale tenue	m
$C_{GL1}(t)$	Evoluzione temporale della concentrazione	kg∙m ⁻³
	totale di farmaco nel lume intestinale tenue	
q_{INT}	<i>Clearance</i> intestinale	m ³ ·s ⁻¹
$C_{INT}(t)$	Evoluzione temporale della concentrazione	kg∙m⁻³
	totale di farmaco nell'intestino	
q_{PAN}	Clearance pancreatica	m ³ ·s ⁻¹
$C_{PAN}(t)$	Evoluzione temporale della concentrazione	kg∙m⁻³
	totale di farmaco nel pancreas	
h_{GLI}	Coefficiente di trasporto di materia tra il lume	S ⁻¹
	intestinale tenue e l'intestino	
R_{GL1}	Rapporto tra la concentrazione totale e quella	-
	di farmaco libero nel lume intestinale tenue	2 1
q_F	Clearance del lume intestinale crasso	$m^3 \cdot s^{-1}$
V_{GL2}	Volume del lume intestinale crasso	m

Pag. 102

$C_{GL2}(t)$	Evoluzione temporale della concentrazione	kg∙m ⁻³
	totale di farmaco nel lume intestinale crasso	
V_i^E	Volume della zona extracellulare dell'i-esimo	m ³
	tessuto o organo	
V_i^{TOT}	Volume dell' <i>i</i> -esimo tessuto o organo	m ³
h_i	Coefficiente di trasporto di materia tra la zona	s ⁻¹
	extracellulare e la zona cellulare dell'i-esimo	
	tessuto o organo	
$C_i^E(t)$	Evoluzione temporale della concentrazione	kg∙m ⁻³
	totale di farmaco nella zona extracellulare	_
	dell'i-esimo compartimento	
$C_i^{EF}(t)$	Evoluzione temporale della concentrazione di	kg∙m ⁻³
	farmaco libero (non legato alle proteine) nella	_
	zona extracellulare dell'i-esimo	
	compartimento	
$C_i^{CF}(t)$	Evoluzione temporale della concentrazione di	kg∙m ⁻³
	farmaco libero (non legato alle proteine) nella	-
	zona cellulare dell' <i>i</i> -esimo compartimento.	
q_i	Clearance dell'i-esimo tessuto o organo	$m^3 \cdot s^{-1}$
V_i^C	Volume della zona cellulare dell'i-esimo	m ³
	tessuto o organo	
$C_i^{\ C}(t)$	Evoluzione temporale della concentrazione	kg∙m ⁻³
	totale di farmaco nella zona cellulare dell'i-	-
	esimo compartimento	
D	Dose	kg

Sezione (2)

	Modello ACAT	
Simbolo	Descrizione	Unità nel SI
$M_i^{ABSORBED}$	Massa di farmaco assorbito per trasporto	kg
	passivo nell'i-esimo enterocita	
$k_{Ai}(t)$	Costante cinetica di assorbimento	s ⁻¹
V_i	Volume dell'i-esimo enterocita	m^3
C_i^{LUMEN}	Concentrazione nel lume relativo all' i-esimo	kg∙m ⁻³
	enterocita	
$C_i^{ENTEROCYTE}$	Concentrazione nell' <i>i</i> -esimo enterocita	kg∙m ⁻³
P_{EFFi}	Permeabilità effettiva del farmaco nell'i-esimo	$m \cdot s^{-1}$
	compartimento intestinale	
α_i	Rapporto tra la superficie di scambio ed il	m ⁻¹
	volume dell' <i>i</i> -esimo enterocita	
M^{LIVER}	Massa di farmaco nel fegato	kg
Q_H	Portata di sangue diretto al fegato	$m^3 \cdot s^{-1}$
R_B	Rapporto tra la concentrazione di farmaco nel	-
	sangue e la concentrazione di farmaco nel	
	plasma	
$C_{PV}(t)$	Concentrazione nella vena porta	kg·m ⁻³
$C_{LIVER}(t)$	Concentrazione nel fegato	kg·m ⁻³
$R_{METABOLIC}(t)$	Velocità del metabolismo epatico	kg·s ⁻¹

Sezione (3)

	Modello a due compartimenti	
Simbolo	Descrizione	Unità nel SI
V_P	Volume di distribuzione del compartimento	m ³
	molto perfuso	
$C_P(t)$	Evoluzione temporale della concentrazione di	kg∙m ⁻³
	farmaco nel compartimento molto perfuso	
k_{TP}	Coefficiente di trasporto di materia dal	s ⁻¹
	compartimento poco perfuso a quello molto	
	perfuso	
V_T	Volume di distribuzione del compartimento	m ³
	poco perfuso	
$C_T(t)$	Evoluzione temporale della concentrazione di	kg∙m ⁻³
	farmaco nel compartimento poco perfuso	
k_{PT}	Coefficiente di trasporto di materia dal	s ⁻¹
	compartimento molto perfuso a quello poco	
	perfuso	
k_{ELP}	Costante cinetica di eliminazione dal	s ⁻¹
	compartimento molto perfuso	
f_H	Frazione della dose che sfugge il metabolismo	-
	epatico	
A(t)	Evoluzione temporale della massa di farmaco	kg
	nel sito di assorbimento	
k_A	Costante cinetica di assorbimento	s ⁻¹

Sezione (4)

	Nuovo modello basato sulla fisiologia	
Simbolo	Descrizione	Unità nel SI
t_0	Istante della somministrazione	S
t_G	Tempo di residenza nel lume gastrico	s
t_{SI}	Tempo di residenza nel lume intestinale tenue	S
t_{LI}	Tempo di residenza nel lume intestinale crasso	S
A(t)	Evoluzione temporale della massa di farmaco	kg
	nel lume gastrointestinale	
r(t)	Evoluzione temporale della massa di farmaco	kg
	rilasciata dalla dose in-vitro	
$J_{GL}(t)$	Portata di farmaco che attraversa la parete del	kg·s ⁻¹
	lume e si riversa nel sistema circolatorio	
	gastrointestinale	
$k_{ELGIL}(t)$	Evoluzione temporale della costante cinetica	s ⁻¹
	di metabolismo ed escrezione	
V_{GICS}	Volume del sistema circolatorio	m ³
	gastrointestinale	
$C_{GICS}(t)$	Evoluzione temporale della concentrazione di	kg∙m ⁻³
	farmaco nel sistema circolatorio	
	gastrointestinale	
Q_{PV}	Portata volumetrica della vena porta	m ³ ·s ⁻¹
$C_P(t)$	Evoluzione temporale della concentrazione di	kg∙m ⁻³
	farmaco nel compartimento molto perfuso	
VL	Volume del fegato	m ³
$C_L(t)$	Evoluzione temporale della concentrazione di	kg∙m ⁻³
	farmaco fegato	
Q_{HA}	Portata volumetrica dell'arteria epatica	$m^3 \cdot s^{-1}$
Q_{HV}	Portata volumetrica della vena epatica	$m^3 \cdot s^{-1}$
CL_H	Clearance epatica	$m^3 \cdot s^{-1}$
V_P	Volume di distribuzione del compartimento	m ³
	molto perfuso	
k_{TP}	Coefficiente di trasporto di materia dal	s ⁻¹
	compartimento poco perfuso a quello molto	
	perfuso	2
V_T	Volume di distribuzione del compartimento	m ³
	poco perfuso	

k_{PT}	Coefficiente di trasporto di materia dal	s^{-1}
	compartimento molto perfuso a quello poco	
	perfuso	
k_{FIP}	Costante cinetica di eliminazione dal	s ⁻¹
	compartimento molto perfuso	
$C_{T}(t)$	Evoluzione temporale della concentrazione di	kg·m⁻³
	farmaco nel compartimento poco perfuso	
Vp	Volume del bolo che attraversa il tratto	m ³
' D	gastrointestinale	
k _{ACH} (t)	Evoluzione temporale della costante cinetica	s ⁻¹
NAGIL(V)	di assorbimento	5
Raias	Coefficiente di ripartizione del farmaco nel	_
RGICS	sistema circolatorio gastrointestinale	
D		kα
	Costante cinetico di assorbimento attraverso le	Kg
κ_{AGL}	costante cinetica ul assorbimento attraverso le	5
1	Contente cinetico di esserbimente attraverse la	a-1
K _{ASIL}	Costante cinetica di assorbimento attiaverso le	S
1	Costante cinetico di esserbimente attraverse la	a-1
K_{ALIL}	Costante cinetica di assorbimento attraverso le	S
7	pareti dell'intestino crasso	-1
k_{ELGL}	Costante cinetica di metabolismo ed	S
-	escrezione attraverso le pareti dello stomaco	-1
k_{ELSIL}	Costante cinetica di metabolismo ed	S
	escrezione attraverso le pareti dell'intestino	
	tenue	1
k_{ELLIL}	Costante cinetica di metabolismo ed	S
	escrezione attraverso le pareti dell'intestino	
	crasso	
R_{SI}	Raggio dell'intestino tenue	m
L_{SI}	Lunghezza dell'intestino tenue	m
R_{LI}	Raggio dell'intestino crasso	m
L_{LI}	Lunghezza dell'intestino crasso	m
V_{PV}	Volume della vena porta	m ³
β	Coefficiente di maggiorazione del volume	-
	della vena porta	
P_{EFFi}	Permeabilità effettiva del farmaco nell'i-esima	$m \cdot s^{-1}$
	parte del tratto gastrointestinale	
S_i/V_i .	Rapporto tra la superficie di scambio ed il	m ⁻¹
	volume dell' <i>i</i> -esima parte del tratto	
	gastrointestinale	
E_H	Rapporto di estrazione epatica	-
а	Parametro della funzione di <i>fitting</i> del rilascio	kg∙m ⁻³
	in-vitro di teofillina	-
b	Parametro della funzione di <i>fitting</i> del rilascio	kg∙m ⁻³
	in-vitro di teofillina	5
t_a	Parametro della funzione di <i>fitting</i> del rilascio	S
	<i>in-vitro</i> di teofillina	
t _h	Parametro della funzione di <i>fitting</i> del rilascio	S
U		

	<i>in-vitro</i> di teofillina	
f_{UP}	Frazione di farmaco non legato alle proteine	-
	plasmatiche	
ρ	Parametro della funzione di <i>fitting</i> del rilascio	-
	in-vitro di divalproex sodium e di diltiazem	
k	Parametro della funzione di <i>fitting</i> del rilascio	S
	in-vitro di divalproex sodium e di diltiazem	
n_1	Parametro della funzione di <i>fitting</i> del rilascio	-
	in-vitro di divalproex sodium e di diltiazem	
n_2	Parametro della funzione di <i>fitting</i> del rilascio	-
	<i>in-vitro</i> di divalproex sodium e di diltiazem	

Bibliografia

- 1. Grass G.M., Sinko P.J., Physiologically-based pharmacokinetic simulation modelling, *Advanced Drug Delivery Reviews* **54** 433-451 (2002).
- Agoram B., Woltosz W. S., Bolger M. B., Predicting the impact of physiological and biochemical processes on oral drug bioavailability, *Advanced Drug Delivery Reviews* 50 S41-S67 (2001).
- [Van de Waterbeemd H., Gifford E., ADMET *in-silico* modelling: towards the prediction paradise?, *Nature Reviews Drug Discovery* 2 192-204 (2003)] http://www.nature.com/nrd/journal/v2/n3/abs/nrd1032.html
- [Lezioni di Farmacologia generale, Dott. Giustino Orlando, Università di Chieti e Pescara] http://farmacia.unich.it/farmacologia/didattica/farmacognosia/diapositi ve 1-127.pdf
- [Bertini S., Lezioni di farmacologia e tossicologia veterinaria, Università di Parma] http://www.unipr.it/arpa/facvet/dol/bertini/farmacocinetica.ppt
- 6. [MDS-Italia] http://www.mds-italia.it/altre/manuale/sez22/2982734b.html
- Amorosa M., *Principi di tecnica farmaceutica*, Libreria Universitaria L. Tinarelli Bologna (1998).
- 8. Martinez M. N., Amidon G. L., A mechanistic approach to understanding the factors affecting drug absorption: a review of fundamentals, *Journal of Clinical Pharmacology* **42** 620-631 (2002).
- 9. [GastroplusTM User Manual] http://www.simulation-plus.com
- 10. Fournier R., Basic transport phenomena in biomedical engineering, Taylor & Francis (1999).
- 11. Birkett D.J., Elementi essenziali di farmacocinetica (Edizione italiana a cura di Marco Cosentino), Piccin (2006).

- Jain R., Gerlowski L.E., Weissbrod J. M., Wang J., Pierson R. N., Kinetics of uptake, distribution and excretion of zinc in rats, *Annals of Biomedical Engineering* 9 347-361 (1981).
- 13. Gerlowski L.E., Jain R., Physiologically based pharmacokinetic modeling: principles and applications, *Journal of Pharmaceutical Sciences*, **72**(10) 1103-1127 (1983).
- [Lista delle pubblicazioni notevoli sui modelli farmacocinetici basati sulla fisiologia e sul loro impiego] http://oaspub.epa.gov/eims/eimscomm.getfile?p_download_id=458317
- 15. Nestorov I.A., Aarons L.J., Rowland M., Physiologically based pharmacokinetic modeling of a homologous series of barbiturates in the rat: a sensitivity analysis, *Journal of Pharmacokinetics and Biopharmaceutics*, **25**(4) 413-447 (1997).
- 16. Levitt D., PKQuest: a general physiologically based pharmacokinetic model. Introduction and application to propranolol, *BMC Clinical Pharmacology* **2**(5) 1-21 (2002).
- 17. [Huisinga W., Telgmann R., Wulkow M., Preprint version May 2006, accepted for publication in *Drug Discovery Today*, The Virtual Lab approach to pharmacokinetics: design principles and concepts] http://compphysiol.mi.fu-berlin.de/pub/VirtualLab.pdf
- 18. Blakey G.E., Nestorov I.A., Arundel P.A., Aarons L.J., Rowland M., Quantitative structure-pharmacokinetics relationships: I. development of a whole-body physiologically based model to characterize chages in pharmacokinetics across a homologous series of barbiturates in the rat, *Journal of Pharmacokinetics and Biopharmaceutics*, **25** 277-312 (1997).
- 19. Nestorov I.A., Aarons L.J., Arundel P.A., Rowland M., Lumping of whole-body physiologically based pharmacokinetic models, *Journal of Pharmacokinetics and Biopharmaceutics*, **26**(1) 21-46 (1998).
- 20. Nestorov I.A., Sensitivity analysis of pharmacokinetic and pharmacodynamic systems: I. a structural approach to sensitivity analysis of physiologically based pharmacokinetic models, *Journal of Pharmacokinetics and Biopharmaceutics* **27**(6) 577-596 (1999).
- 21. Gueorguieva I.I., Nestorov I.A., Murby S., Gisbert S., Collins B., Dickens K., Duffy J., Hussain Z., Rowland M., Development of a whole-body physiologically based model to characterize the pharmacokinetics of benzodiazepines. 1: Estimation of rat tissueplasma partition ratios, *Journal of Pharmacokinetics and Pharmacodynamics*, **31**(4) 269-298 (2004).
- 22. Gueorguieva I.I., Nestorov I.A., Rowland M., Reducing whole-body physiologically based models using global sensitivity analysis: diazepam case study, *Journal of Pharmacokinetics and Pharmacodynamics*, **33**(1) 1-27 (2006).

23.	Bjorkman S., Reduction and Lumping of physiologically based
	pharmacokinetic models: prediction of the disposition of fentalyn and
	pethidine in humans by successively simplified models, Journal of
	Pharmacokinetics and Pharmacodynamics, 30 (4) 285-307 (2003).

- 24. Levitt D., PKQuest: measurement of intestinal absorption and first pass metabolism-application to human ethanol pharmacokinetics, *BMC Clinical Pharmacology* **2**(4) 1-12 (2002).
- 25. Levitt D., PKQuest: capillary permeability limitation and plasma protein binding-application to human inulin, dicloxacillin and ceftriaxone pharmacokinetics, *BMC Clinical Pharmacology* **2**(7) 1-11 (2002).
- 26. Levitt D., The use of a physiologically base pharmacokinetic model to evaluate deconvolution measurements of systemic absorption, *BMC Clinical Pharmacology* **3**(1) 1-29 (2003).
- 27. Levitt D., Human physiologically based pharmacokinetic model for propofol, *BMC Anesthesiology* **5**(4) 1-29 (2005).
- Yu L.X., Lipka E., Crison J.R., Amidon G.L., Transport approaches to the biopharmaceutical design of oral drug delivery systems: prediction of intestinal absorption, *Advanced Drug Delivery Reviews* 19 359-376 (1996).
- 29. Yu L.X., Crison J.R., Amidon G.L., Compartmental transit and dispersion model analysis of small intestinal transit flow in humans, *International Journal of Pharmaceutics* **140** 111-118 (1996).
- Yu L.X., Amidon G.L., Saturable small intestinal drug absorption in humans: modelling and interpretation of cefatrizine data, *European Journal of Pharmaceutics and Biopharmaceutics* 45 199-203 (1998).
- Yu L.X., Amidon G.L., Characterization of small intestinal transit time distribution in humans, *International Journal of Pharmaceutics* 171 157-163 (1998).
- Yu L.X., Amidon G.L., A compartmental absorption and transit model for estimating oral drug absorption, *International Journal of Pharmaceutics* 186 119-125 (1999).
- Mason W.D., Winer N., Kochak G., Cohen I., Bell R., Kinetics and absolute bioavailability of atenolol., *Clinical Pharmacology and Therapeutics* 25 408-415 (1979).
- 34. Di Muria M., Tesi di Laurea in Ingegneria Chimica, Università di Salerno (2006).
- Lu X., Zhao J., Gregersen H., Small intestinal morphometric and biomechanical changes during physiological growth in rats, *Journal of Biomechanics* 38 417-426 (2005).

- 36. DeSesso J.M., Jacobson C.F., Anatomical and physiological parameters affecting gastrointestinal absorption in humans and rats, *Food and Chemical Toxicology* **39** 209-228 (2001).
- Lee H.J., Schiesser W.E., Ordinary and partial differential equation routines in C, C++, Fortran, Java®, Maple®, and MATLAB®, Chapmann & Hall/CRC (2004).
- Peh K.K., Yuen K.H., Indirect gastrointestinal transit monitoring and absorption of theophylline, *International Journal of Pharmaceutics* 139 95-103 (1996).
- 39. Gisbert G.S.L., Torres M.F., Zinc uptake in five sectors of the rat gastrointestinal tract: kinetic study in the whole colon, *Pharmaceutical Research* **13**(8) 1154-1161 (1996).
- 40. [Portal venous blood flow measurement in the rat, chronic] http://www.transonic.com/sp32.pdf
- 41. Frazier J.M., Cadmium and zinc kinetics in rat plasma following intravenous injection, *Journal of Toxicology and Environmental Health* **6**(3) 503-518 (1980).
- 42. Masyuk T.V., Ritman E.L., LaRusso N.F., Hepatic artery and portal vein remodeling in rat liver, *American Journal of Pathology* **162**(4) 1175-1182 (2003).
- 43. Sun D., Lennernas H., Welage L.S., Barnett J.L., Landowski C.P., Foster D., Fleisher D., Lee K.D., Amidon G., Comparison of human duodenum and Caco2 gene expression profiles for 12,000 gene sequences tags and correlation with permeability of 26 drugs, *Pharmaceutical Research* 19(10) 1400-1416 (2002).
- 44. [Jagannathan N.R., Introduction, *Current Science* **76**(6) 718 (1999)] http://www.ias.ac.in/currsci/mar25/articles0.htm
- 45. [RadiologyInfo, The radiology information resource for patients] http://www.radiologyinfo.org/en/info.cfm?pg=bodymr&bhcp=1
- 46. Rinaki E., Valsami G., Macheras P., Quantitative biopharmaceutics classification system: the central role of dose/solubility ratio, *Pharmaceutical Research* **20**(12) 1917-1925 (2003).
- 47. Karlsson J., Artuson P., A new diffusion chamber system for the determination of the drug permeability coefficients across the human intestinal epithelium that are independent of the unstirred water layer, *Biochimica et Biophysica Acta* **111** 204-210 (1992).
- Qin F., Van Cauteren M., Osteaux M., Willems G., Determination of liver volume in vivo using MRI, European Journal of Radiology 11(3) 191-195 (1990).
- 49. Price P.S., Chaisson C.F., Young J.S., Tedder D.R., Mathis E., Conolly R.B., Modeling inter-individual variation in physiological

factors used in PBPK models of humans, *Critical Reviews in Toxixology* **33**(5) 469-503 (2003).

- 50. [Techniques for blood flow measurement] http://www.wrongdiagnosis.com/medical/blood flow measurement.htm
- 51. Hosseini-Yeganeh M., McLachlan A.J., Physiologically based pharmacokinetic model for terbinafine in rats and humans, *Antimicrobial Agents and Chemotherapy* **46**(7) 2219-2228 (2002).
- Tominaga M., Ku Y., Shiotani M., Kitagawa T., Maeda I., Kusunoki S., Muramastu S., Kuroda Y., Saitoh Y., Evaluation of administration routes on hepatic extraction ratio of adriamycin using hepatic venous isolation and charcoal hemoperfusion, *International Hepatology Communications 3 Supplement* (1995).
- 53. Iwasaki T., Ku Y., Kusunoki N., Tominaga M., Fukumoto T., Muramtsu S., Kuroda Y., Regional pharmacokinetics of doxorubicin following hepatic arterial and portal venous administration: evaluation with hepatic venous isolation and charcoal hemoperfusion, *Cancer Research* **58** 339-3343 (1998).
- 54. [CD-Rom Medicamenta (VII Edizione)] http://www.medicamenta.com
- 55. [Henisz A.K., Giant portal vein and superior mesenteric vein (SMV) aneurysm, Applied Radiology Online 30(5) (2001)] http://www.appliedradiology.com/case/case.asp?Id=528&IssueID=57 &CatID=43&SubCatID=97&ThreadID=&Quiz=
- 56. [The portal system of veins] http://www.bartleby.com/107/174.html
- Homsy W., Lefebvre M., Caillé G., du Souich P., Metabolism of diltiazem in hepatic and extrahepatic tissues or rabbits: in vitro studies, *Pharmaceutical Research* 12(4) 609-614 (1995).
- Quintavalle U., Voinovich D., Perissutti B., Serdoz F., Grassi G., Dal Col A., Grassi M., Preparation of sustained release co-extrudates by hot-melt extrusion and mathematical modelling of in vitro/in vivo drug release profiles, *European Journal of Pharmaceutical Sciences* 33 282-293 (2008).
- 59. [Drug Information Online] http://www.drugs.com
- Dutta S., Zhang Y., Selness D.E., Lee L.L., Williams L.A., Sommerville K.W., Comparison of bioavailability of unequal doses of divalproex sodium extended-release formulation relative to the delayed-release formulation in healthy volunteers, *Epilepsy Research* 49 1-10 (2002).
- 61. Iwao T., Inoue K., Hayashi Y., Yuasa K., Watanabe J., Absorption and metabolic extraction of diltiazem from the perfused rat small

intestine, Drug Metabolism and Pharmacokinetics **19**(6) 430-437 (2004).

- 62. Dutta S., Yihong Q., Samara E., Cao G., Granneman R., Once-a-day extended-release dosage forms of divalproex sodium III: development and validation of a level A *in vitro-in vivo* correlation (IVIVC), *Journal of Pharmaceutical Sciences* **94**(9) 1949-1956 (2005).
- 63. Korhonen O., Kanerva H, Vidgren M., Urtti A., Ketolainen J., Evaluation of novel starch acetate-diltiazem controlled release tablets in healthy human volunteers, *Journal of Controlled Release* **95** 515-520 (2004).
- 64. Naritomi Y., Terashita S., Kimura S., Suzuki A., Kagayama A., Sugiyama Y., Prediction of human hepatic *clearance* from in vivo animal experiments and in vitro metabolic studies with liver microsomes from animals and humans, *Drug Metabolism and Disposition* **29**(10)1316-1324 (2001).

Ringrazio i professori del Corso di Laurea in Ingegneria Chimica per avermi dato la motivazione e la preparazione necessarie ad affrontare questo percorso di studi, con particolare gratitudine per il Prof. Gaetano Lamberti, il Prof. Giuseppe Titomanlio, la Prof.ssa Anna Angela Barba che mi hanno sapientemente guidato nel lavoro di tesi triennale e specialistica, e per la Dott.ssa Paola Scarfato, che mi ha accompagnato con dedizione nell'esperienza di tirocinio aziendale.

Ringrazio i colleghi con cui ho condiviso le riflessioni, l'impegno nei lavori di progetto e le aspirazioni.

Ringrazio profondamente i miei cari per il valido sostegno e il continuo stimolo alla realizzazione di un sogno.