Applicazione di tecniche crioporosimetriche a idrogeli biocompatibili

Maria Claro

UNIVERSITÀ DEGLI STUDI DI SALERNO

Facoltà di Ingegneria

Corso di Laurea in Ingegneria Chimica

Applicazione di tecniche crioporosimetriche a idrogeli biocompatibili

Tesi in Principi di Ingegneria Chimica

Relatore:

Prof. Ing. Gaetano Lamberti

Candidata:

Maria Claro

matricola 0610200265

Anno Accademico 2010/2011

Alla mia famiglia

Questo testo è stato stampato in proprio, in Times New Roman La data prevista per la discussione della tesi è il 23 settembre 2011 Fisciano, 16 settembre 2011

Sommario

Sommario	I
Indice delle figure	III
Indice delle tabelle	V
Introduzione	1
1.1 Generalità	_ 2
1.1.1 Gli idrogeli	2
1.1.1 Dimensioni reticolari	4
1.1.2 Metodi di misura	6
1.2 Stato dell'arte	7
1.2.1 Determinazione della distribuzione dimensionale tramite calorimetria a scansione differenziale	8
1.2.2 Metodo per passare dalle curve DSC alle curve PSD	9
1.2.2.1 Stima simultanea di α e β	11
1.2.2.2 Procedura iterativa per l'ottimizzazione di β	15
1.3 Obiettivi del lavoro di tesi	17
Materiali e metodi	19
2.1 Materiali	20
2.1.1 Pluronic F127	20
2.1.2 Alginato	22
2.2 Apparecchiature	23
2.2.1 DSC (Differential Scanning Calorimeter)	23

Pag. II	Applicazione di tecniche crioporimetriche a idrogeli Mar	ia Claro
2.3 Meto	di	25
2.3.1 P	reparazione della matrice gelificante di Pluronic F127 ed	25
2.3.2 Ai	alisi al DSC	25 25
Modellaz	ione	27
3.1 Const	derazioni teoriche	28
3.1.1 V funzione	alutazione della distribuzione della temperatura di fusione in e del raggio del poro	30
3.1.2 De	eterminazione delle funzioni $r(T) e \Delta h(r(T))$	35
3.1.3 De	eterminazione di beta e della distribuzione volumetrica	38
3.2 Paran	netri fisici	41

3.3 Dati input	_ 42
3.4 Algoritmo di risoluzione	_ 42
Risultati e discussione	43
4.1 Tracciati DSC: raffreddamenti a \dot{T} costante + quench	_ 44
4.1.1 Sottrazione della linea di base	45
4.1.2 Picchi dell'acqua libera e picchi dell'acqua legata	48
4.2 Risultati dell'analisi crioporimetrica	_ 54
Conclusioni	67
5.1 Conclusioni	_ 68
Bibliografia	71

Indice delle figure

Figura 1. Classificazione delle porosità di un materiale	5
Figura 2. Curve DSC di riscaldamento e raffreddamento di un campione SiO ₂ [5]	9
Figura 3. Differenti tipi di acqua all'interno del poro10	0
Figura 4. Diagramma a blocchi per l'ottimizzazione di α e β [5]12	3
Figura 5. Valori ottimizzati dei coefficienti α per fusione (α_m) e solidificazione (α_f) [5]	4
Figura 6. Diagramma a blocchi per la determinazione dello spessore β [6]1	5
Figura 7. Curve di distribuzione delle dimensioni dei pori ottenute da diversi metodi per uno stesso campione SiO ₂ [6]10	5
Figura 8. Formula di struttura dei pluronici a blocchi [1]	0
Figura 9. Struttura chimica degli alginati22	2
Figura 10. Rappresentazione del metodo di misura calorimetrico [13]	4
Figura 11. Immagine del Mettler-Toledo DSC 822	4
Figura 12. Eccesso di acqua nel materiale poroso	3
Figura 13. Condizione in cui non c'è eccesso di acqua nel materiale poroso	4
Figura 14. Analisi al DSC: campioni 1 e 2	4
Figura 15. Analisi al DSC: campioni 3 e 4	4
Figura 16. Analisi al DSC: campione 54	5
Figura 17. Elaborazione delle curve DSC: campioni 1 e 2 40	6
Figura 18. Elaborazione delle curve DSC: campioni 3 e 4	б
Figura 19. Elaborazione delle curve DSC: campione 54	7
Figura 20. Segnale "ripulito" per tutti e 5 i campioni 47	7
Figura 21. Costruzione della curva di fitting da sottrarre al segnale DSC: campioni 1 e 2	9

Figura 22. Costruzione della curva di fitting da sottrarre al segnale DSC: campioni 3 e 4
Figura 23. Costruzione della curva di fitting da sottrarre al segnale DSC: campione 5
Figura 24. Segnale dovuto all'acqua libera e all'acqua legata: campioni 1 e 2 50
Figura 25. Segnale dovuto all'acqua libera e all'acqua legata: campioni 3 e 4 51
Figura 26. Segnale dovuto all'acqua libera e all'acqua legata: campioni 3 e 4 51
Figura 27. Picchi dell'acqua "libera" per tutti e 5 i campioni
Figura 28. Picchi dell'acqua "legata" per tutti e 5 i campioni
Figura 29. Distribuzioni di probabilità dei raggi dei pori per il campione 1 (z=2)55
Figura 30. Distribuzioni di probabilità dei raggi dei pori per il campione 2 (z=2) 55
Figura 31. Distribuzioni di probabilità dei raggi dei pori per il campione 3 (z=2)56
Figura 32. Distribuzioni di probabilità dei raggi dei pori per il campione 4 (z=2)56
Figura 33. Distribuzioni di probabilità dei raggi dei pori per il campione 5 (z=2)57
Figura 34. Curve di distribuzione differenziale per i 5 campioni (z=2)
Figura 35. Distribuzioni di probabilità dei raggi dei pori per il campione 1 (z=3) 59
Figura 36. Distribuzioni di probabilità dei raggi dei pori per il campione 2 ($z=3$) 59
Figura 37. Distribuzioni di probabilità dei raggi dei pori per il campione 3 ($z=3$) 60
Figura 38. Distribuzioni di probabilità dei raggi dei pori per il campione 4 (z=3)60
Figura 39. Distribuzioni di probabilità dei raggi dei pori per il campione 5 ($z=3$) 61
Figura 40. Curve di distribuzione differenziale per i 5 campioni (z=3)
Figura 41. Curve di distribuzione differenziale dei raggi dei pori nel caso di <i>z</i> =2 e <i>z</i> =3: campione 1
Figura 42. Curve di distribuzione differenziale dei raggi dei pori nel caso di <i>z</i> =2 e <i>z</i> =3: campione 2
Figura 43. Curve di distribuzione differenziale dei raggi dei pori nel caso di <i>z</i> =2 e <i>z</i> =3: campione 3
Figura 44. Curve di distribuzione differenziale dei raggi dei pori nel caso di <i>z</i> =2 e <i>z</i> =3: campione 4
Figura 45. Curve di distribuzione differenziale dei raggi dei pori nel caso di <i>z</i> =2 e <i>z</i> =3: campione 5

Indice delle tabelle

Tabella 1. Alcune proprietà chimico-fisiche dei copolimeri a blocchi pluronici	21
Tabella 2. Tabella riassuntiva dei campioni utilizzati	26
Tabella 3. Significato dei simboli nell'espressione di V_f	29
Tabella 4. Dati input del programma	42
Tabella 5. Massa di acqua in eccesso che fonde a 0°C	53
Tabella 6. Valori di β determinati mediante analisi crioporosimetrica nel caso di modello cilindrico e modello sferico	63
Tabella 7. Tabella riassuntiva dei valori di alcune caratteristiche dei pori valutati tramite crioporosimetria	66

Bibliografia

- 1. Cuofano C., Reticolazione dei geli a base di Alginato Pluronico F127 con rame bivalente, Tesi di Laurea in Ingegneria Chimica, Università degli Studi di Salerno, 2009.
- 2. http://biomedicaancona.weebly.com/
- 3. Perin D., Biomaterials for biotechnological applications: synthesis and activity evaluation, Tesi di Dottorato in Chemical and Pharmaceutical Sciences and Technologies, Università degli Studi di Trieste, 2009.
- 4. Brun M., Lallemand A., Quinson J. F., Eyraud C., Changement d'état liquid-solide dans les milieu poreux: II. Étude théorique de la solidification d'un condensate capillaire, *Journal de chimie physique* **70**, 979-989 (1973).
- 5. Ishikiriyama K., Todoki M., Motomura K., Pore Size Distribution (PSD) Measurements of Silica Gels by Means of Differential Scanning Calorimetry: I. Optimization for Determination of PSD, *Journal of colloid and interface science* **171**, 92-102 (1995).
- 6. Ishikiriyama K., Todoki M., Pore Size Distribution (PSD) Measurements of Silica Gels by Means of Differential Scanning Calorimetry: II. Thermoporosimetry, *Journal of colloid and interface science* **171**, 103-111 (1995).
- 7. Ishikiriyama K., Todoki M., Evaluation of water in silica pores using differential scanning calorimetry, *Thermochimica Acta* **256**, 213-226 (1994).
- 8. Ishikiriyama K., Sakamoto A., Todoki M., Tayama T., Tanaka K., Kobayashi T., Pore size distribution measurements of polymer hydrogel membranes for artificial kidneys using differential scanning calorimetry, *Thermochimica Acta* **267**, 169-180 (1995).
- Ishikiriyama K., Todoki M., Kobayashi T., Tanzawa H., Pore Size Distribution Measurements of Poly(methyl methacrylate) Hydrogel Membranes for Artificial Kidneys Using Differential Scanning Calorimetry, *Journal of colloid and interface science* 173, 419-428 (1995).

Pag. 72 Applicazione di tecniche crioporimetriche a idrogeli Maria Claro

10.	Brun M., et al., A new method for the simultaneous determination of the
	size and shape of pores: the thermoporosimetry, Thermochimica Acta 21,
	59-88 (1977).

- 11. Rabbia L., I copolimeri pluronici (PEO-PPO-PEO). Termodinamica e cinetica di micellizzazione e di gelificazione, Tesi di Laurea in Ingegneria Chimica, Università degli Studi di Salerno, 2007.
- Yamamoto T., Mukai R. S., Nitta K., Tamon H., Endo A., Ohomori T., Nakaiwa M., Evaluation of porous structure of resorcinol-formaldehyde hydrogels by thermoporometry, *Thermochimica Acta* 439, 74-79 (2005).
- 13. Wang L., The nanoporous morphology of photopolymerized crosslinked polyacrylamide hydrogels, Tesi di Dottorato in Chemical Engineering, China University of Petroleum, 2008.
- 14. Landry M. R., Thermoporometry by differential scanning calorimetry: experimental considerations and applications, *Thermochimica Acta* **439**, 27-50 (2005).
- 15. Iza M., Woerly S., Danumah C., Kaliaguine S., Bousmina M., Determination of pore size distribution for mesoporous materials and polymeric gels by means of DSC measurements: thermoporometry, *Polymer* **41**, 5885-5893 (2000).

La prima persona che mi preme ringraziare sentitamente è il prof. Gaetano Lamberti per aver reso questa prima esperienza di ricerca entusiasmante, per i preziosi insegnamenti che mi ha trasmesso e per essersi dimostrato SEMPRE disponibile a dirimere i miei dubbi durante la stesura di questo lavoro.

Desidero ringraziare con affetto i miei genitori per il sostegno materiale e morale che non mi hanno mai fatto mancare: non sufficiente sarebbe un'intera tesi per descrivere tutto quello che hanno fatto e continuano a fare per me. Un GRAZIE di cuore va alla mia sorellina, Antonella, per essere stata al mio fianco in ogni singolo per avermi supportato momento, nei momenti difficili e consigliato sempre in maniera saggia e sincera. Un ringraziamento speciale ed enorme ad Andrea che in questi anni mi ha sopportata, consolata, motivata, per avermi ascoltata e aver saputo capire i miei stati d'animo più di tutti, sempre pronto ad accompagnarmi in ogni tappa importante condividendola insieme a me.

Ringrazio gli amici "universitari", persone meravigliose che ho avuto l'opportunità di conoscere durante questo percorso, per aver condiviso con me le preoccupazioni degli esami, ma anche i non pochi momenti di ilarità che hanno scandito le intense giornate di corsi e di studio. Ringrazio le amiche "di sempre" per le interminabili chiacchierate, i loro sorrisi e la loro compagnia.

Ringrazio, infine, le persone che ogni giorno dimostrano di credere in me seguendomi o dedicandomi anche solo un piccolo gesto.