
Processi di *blanching* di prodotti agroalimentari: analisi e modellazione

Loredana Malafronte

UNIVERSITÀ DEGLI STUDI DI SALERNO

Facoltà di Ingegneria

Corso di Laurea in Ingegneria Chimica

Processi di *blanching* di prodotti agroalimentari: analisi e modellazione

Tesi in **Principi di Ingegneria Chimica**e **Impianti Chimici**

Relatori: Candidata:

Prof. Ing. Gaetano Lamberti Loredana Malafronte

matricola 0610200095

Prof. Ing. Anna Angela Barba

Anno Accademico 2007/2008

Questo testo è stato stampato in proprio, in Times New Roman La data prevista per la discussione della tesi è il 22/09/08 Fisciano, 09/09/08

Sommario

Sommario	I
Indice delle figure	III
Indice delle tabelle	V
Introduzione	1
1.1 Generalità	2
1.2 Importanza del consumo di frutta e verdura	3
1.2.1 Classificazione dei prodotti agroalimentari	3
1.3 Il processo di <i>blanching</i>	4
1.4 La banana	6
1.4.1 Composizione	7
1.4.2 Aspetti nutraceutici	8
1.5 Stato dell'arte	9
1.5.1 Effetto delle microonde sull'attività delle perossidasi e	1.0
polifenolossidasi 1.5.2 Confronto tra blanching tradizionale e a microonde	10 11
1.6 Obiettivi ed organizzazione del lavoro di tesi	
1.5.1 Strutturazione	13 15
Materiali e metodi	17
2.1 Materiali	4.0
2.1.1 Banane	— 18
2.2 Apparecchiature	18
2.2.1 Cavità a microonde multimodali	
2.2.4 Termometro a fibre ottiche	19
2.2.3 Network analyzer	20
2.3 Metodi	21
2.3.1 Metodi per la caratterizzazione della matrice agroalimentare2.3.2 Preparazione dei campioni per i processi di blanching e	21
quenching	21
2.3.3 Procedura per il blanching in acqua bollente	21

Pag. II	Processi di blanching di prodotti agroalimentari	L. Malafront
2.3.4 P	rocedura per il blanching a microonde	22
2.3.5 I	Procedure per il quenching	23
Modellaz	zione matematica	25
3.1 Intro	duzione	26
	roprietà termofisiche	26
	alutazione dei coefficienti di scambio termico convettivi	
3.2 Blan	ching in acqua bollente	30
3.2.1M	odello a parametri concentrati	30
	Iodello a parametri distribuiti	30
	ching a microonde	35
	Iodello a parametri concentrati	36
3.4 Rias	sunto delle equazioni di modello	37
Risultati	e discussioni	39
4.1 Misu	re dielettriche	40
4.2 <i>Blan</i>	ching in acqua bollente	45
4.2.1 R	isultati sperimentali	45
4.2.2 S	imulazione	46
4.3 <i>Blan</i>	ching a microonde	50
4.3.1 R	isultati sperimentali	50
4.3.2 S	imulazione	57
Conclusi	oni	6
	clusioni	
5.1 Cond	onielusionie	
	e nfia	

Sommario e indici. Pag. III

Indice delle figure

Figura 1 Composizione chimica (% w/w) della banana ^[7]	6
Figura 2 Effetto dei trattamenti a microonde sull'attività delle perossidasi delle	
purée dei frutti a tempo costante (30 s) e a potenza costante (450W) ^[8]	. 10
Figura 3 Effetto dei trattamenti a microonde sull'attività delle polifenolossidasi	
1 [0]	. 11
Figura 4 Effetto dei trattamenti di <i>blanching</i> sull'indice di imbrunimento e sul	
C [0]	. 12
Figura 5 Effetto dei trattamenti di <i>blanching</i> sull'attività delle polifenolossidasi	
e per ossidasi. (Ridisegnato da Cano et al ^[9])	. 12
Figura 6 Duty-cycle del forno commerciale	. 18
Figura 7 Schema delle principali componenti del circuito di alimentazione e	
controllo della cavità multimodale modificata	. 19
Figura 8 Dettagli costruttivi e specifiche tecniche dei sensori a fibra ottica	
utilizzati per le misure della temperatura nei campioni irradiati a microonde	. 20
Figura 9 Network analyzer	. 20
Figura 10 Foto campione banana; schematizzazione dell'inserimento della	
sonda nel campione di banana.	. 22
Figura 11 Schema del sistema di <i>blanching</i> a microonde	. 23
Figura 12 Schema del campione di alimento	. 26
Figura 13 Costante dielettrica e fattore di perdita della banana (misure effettuate	
sul frutto maturo alla temperatura di 20°C) al variare della frequenza. Confronto	
proprietà dielettriche dell'acqua e delle banane	. 42
Figura 14 Costante dielettrica e fattore di perdita della banana (misure effettuate	
sul frutto maturo alla frequenza di 2.45 GHZ) al variare della temperatura e	
interpolazione dei dati sperimentali.	. 43
Figura 15 Costante dielettrica di vegetali e frutta a 2.45 GHz in funzione della	
temperatura ^[19]	. 44
Figura 16 Fattore di perdita di vegetali e frutta a 2.45 GHz in funzione della	
temperatura [19]	. 44
Figura 17 Profilo di temperatura del trattamento di <i>blanching</i> in acqua bollente e	
di <i>quenching</i> in acqua con ghiaccio	. 46
Figura 18 Confronto profilo termico sperimentale e simulato con modello a	
parametri concentrati del processo studiato in acqua bollente: tempo di	
blanching 15 s, tempo di quenching 20 s	. 47
Figura 19 Confronto profilo termico sperimentale e simulato con modello a	
parametri distribuiti del processo studiato in acqua bollente: tempo di blanching	
15 s, tempo di <i>quenching</i> 20 s	. 50

Figura 20 Schema delle fasi temporali caratteristiche del trattamento a	5 2
microonde	. 52
Figura 21 Profilo termico del trattamento studiato a microonde in regime	52
continuo: potenza 1000 W, tempo di <i>blanching</i> 15 s, tempo di <i>quenching</i> 20 s	. 33
Figura 22 Profilo termico del trattamento studiato a microonde in regime	52
continuo: potenza 800 W, tempo di <i>blanching</i> 30 s, tempo di <i>quenching</i> 300 s	. 53
Figura 23 Profilo termico del trattamento studiato a microonde in regime	<i>5</i> 1
continuo: potenza 600 W, tempo di <i>blanching</i> 60 s, tempo di <i>quenching</i> 300 s	. 54
Figura 24 Profilo termico del trattamento studiato a microonde in regime	~ 4
continuo: potenza 400 W, tempo di <i>blanching</i> 60 s, tempo di <i>quenching</i> 300 s	. 54
Figura 25 Profilo termico del trattamento studiato a microonde in regime	
continuo: potenza 300 W, tempo di <i>blanching</i> 60 s, tempo di <i>quenching</i> 300 s	. 55
Figura 26 Tempi necessari a raggiungere la temperatura di circa 100°C	
all'interno del campione in funzione della potenza erogata	. 56
Figura 27 Profilo termico del trattamento studiato a microonde in regime	
pulsato: potenza 300 W, tempo di blanching 15 s, tempo di quenching 30 s	. 57
Figura 28 Profilo termico del trattamento studiato a microonde in regime	
pulsato: potenza 300 W, tempo di <i>blanching</i> 60 s, tempo di <i>quenching</i> 20 s	. 57
Figura 29 Campo elettrico in funzione della potenza erogata alla minima e alla	
massima temperatura a cui sono sottoposti i campioni durante il riscaldamento	
dielettrico	. 59
Figura 30 Confronto profilo termico sperimentale e simulato del trattamento	
studiato a microonde in regime continuo: potenza 1000 W, tempo di blanching	
15 s, tempo di <i>quenching</i> 20 s	. 60
Figura 31 Confronto profilo termico sperimentale e simulato del trattamento di	
blanching a microonde in regime continuo: potenza 800 W, tempo di blanching	
30 s, tempo di <i>quenching</i> 300 s	.61
Figura 32 Confronto profilo termico sperimentale e simulato del trattamento di	
blanching a microonde in regime continuo: potenza 600 W, tempo di blanching	
-, -, - I	.61
Figura 33 Confronto profilo termico sperimentale e simulato del trattamento di	
blanching a microonde in regime continuo: potenza 400 W, tempo di blanching	
60 s, tempo di quenching 300 s	. 62
Figura 34 Confronto profilo termico sperimentale e simulato del trattamento di	
blanching a microonde in regime continuo: potenza 300 W, tempo di blanching	
60 s. tempo di <i>quenching</i> 300 s.	62

Sommario e indici. Pag. V

Indice delle tabelle

Tabella 1 Composizione chimica e potere calorico della banana ^[7]	7
Tabella 2 Proprietà termofisiche relative alla polpa di banane	26
Tabella 3 Tabella riassuntiva delle equazioni di modello	37
Tabella 4 Trattamenti di <i>blaching</i> a mircoonde	51

Notazione

Simbolo	Descrizione	Unità
Lettere latine		
A	costante Eq.3.1-1	$W/m^2K^{3.5}$
b	semispessore del campione	m
Bi	numero di Biot	adimensionale
C_{I}	costante Eq. 3.1-7	adimensionale
C_p	calore specifico	J/KgK
D	diametro del campione	m
E	campo elettrico	V/m=N/C
f	frequenza	Hz
g	accelerazione di gravità	m^2/s
Gr	numero di Grashof	adimensionale
h	coefficiente di scambio termico	W/m ² K
J_0	funzione di Bessel di ordine zero del primo tipo	adimensionale
J_{I}	funzione di Bessel del primo ordine del primo tipo	adimensionale
k	conducibilità termica	W/mK
Nu	numero di Nusselt	adimensionale
Pr	numero di Prandtl	adimensionale
r	coordinata radiale	m
R	raggio del campione	m

		T
S	superficie di scambio	m^2
	termico	
T	temperatura	°C, K
t	tempo	S
_	coordinata	, m
Z	rettangolare	m
Lettere greche		
α	soluzione Eq. 3.2-10	adimensionale
α_T	diffusività termica	m^2/s
β	soluzione Eq. 3.2-23	adimensionale
3	permettività elettrica	F/m
ε '	costante dielettrica	F/m
ε''	fattore di perdita	F/m
	permettività elettrica	F/m
\mathcal{E}_{0}	dal vuoto	17/111
44	coordinata radiale	adimensionale
η	adimensionale	adimensionale
θ	temperatura	adimensionale
0	adimensionale	aumensionare
٤	spessore	adimensionale
Ç	adimensionale	
ρ	densità	Kg/m ³
τ	tempo adimensionale	adimensionale
ω	frequenza angolare	rad/s
Pedici		
amb	ambiente	
а	aria	
W	acqua	
ext	esterno	
S	slab infinita	
f	film	
C	cilindro infinito	
<u> </u>		1

Bibliografia

- 1. Cappelli P., V. Vannucchi V., *Chimica degli Alimenti*, Zanichelli Ed., Bologna, (2000)
- 2. d'Amore M., Barba A.A., *Ruolo dei processi di trasformazione sulla qualità dei prodotti* alimentari. Gli *smart foods*, MEDeA Mediterraneo ed Alimentazione, 26-28 Ottobre Avellino, Italy, (2007)
- 3. Attianese P., A.A. Barba, M. d'Amore, L. Rastrelli *Effetti dei processi di trasformazione sul profilo nutrizionale degli alimenti*, XII Corso Nazionale ADI La NutriClinica dall'EBM alla Pratica Diagnostico-Dietoterapeutica, 24-27 Settembre, Giardini Naxos (CA), (2007)
- 4. www.nucicitalia.it
- 5. L. Dorantes-Alvarez & L. Parada-Dorantes, *Blanching* using microwave processing.
- 6. Barba A.A., d'Amore M., *Applicazioni delle microonde nel settore agroalimentare* Capitolo 10 del "Il riscaldamento a microonde. Principi ed Applicazioni" Pitagora Editrice, Bologna, pp.269-295, (2008)
- 7. Bianco V., Pampini E., *Orticoltura*, Patron Editore Bologna. (1999)
- 8. B. de Ancos, M. Pilar Cano, A. Hernandez and M. Monreal, *Effects of microwave heating on pigment composition and colour of fruit pureest*, Journal of the Science of Food and Agriculture, 79(5), 663-670, (1999)
- 9. M. P. Cano, B. de Ancos, M. G. Lobo and M. Santos, *Improvement of frozen banana (Musa cavendishii, cv. Enana) colour by blanching: relationship between browning, phenols and polyphenol oxidase and peroxidase activities*, Z Lebensm Unters Forsch A 204, 60-65, (1997)
- 10. U. Kidmose and H. J. Martens, *Change in texture, microstrutture and nutritional quality of carrot slices during blanching and freezing*, Journal of the Science of Food and Agriculture, 79, 1747-1753, (1999)
- 11. M. K. Krokida, C. T. Kiranoudis and Z. B. Marinos-Kouris, *Effect of pretreatment on color of dehydrated products*, Drying Technology, 18(6), 1239-1250, (2000)

- L. Malafronte
- 12. C. Severini, A. Baiano, T. De Pilli, B. F. Carbone and A. Derossi, *Combined treatment of blanching and dehydration: study on potato cubes*, J Food Engineering 68, 289-296, (2005)
- 13. G. Caserta, Essiccamento dielettrico della Musa paradisiaca: analisi del processo di disidratazione e controllo delle proprietà antiossidanti, Tesi di Laurea in Farmacia, (2007)
- 14. J. M. Coulson & J. F. Richardson, *Coulson & Richardson's Chemical Engineering*, 6th Ed. (vol. 1).
- 15. R. B. Bird, W. E. Stewart R.B. Bird, E.N. Lightfoot, *Transport Phenomena*, 2th Ed.
- 16. G. C. J. Bart, K. Hanjalic, *Estimation of shape factor for transient conduction*, International Journal of Refrigeration 26, 360-367, (2003)
- 17. H. S. Carslaw & J. C. Jaeger, Conduction of heat in solids, 2th Ed.
- 18. R. B. Bird, W. E. Stewart R.B. Bird, E.N. Lightfoot, *Transport Phenomena*, 2th Ed. (problema 12C.1)
- 19. O. Sipahioglu and S. A. Barringer, *Dielectric Properties of Vegetables and Fruits as a Function of Temperature, Ash, and Moisture Content*, Journal of food science, 68(1), (2003)

Parte dei risultati conseguiti con lo sviluppo del presente lavoro di tesi saranno presentati al *First European Congress EFFoST*, in Ljubljana (Slovenia) il 4-9 Novembre 2008. Qui di seguito è riportato l'abstract del contributo inviato.

FIRST_EUROPEAN FOOD CONGRESS

Blanching Processes of Fruit: Experiments and Modeling

A.A. Barba¹, M.d'Amore¹, A. Tortora¹, G. Lamberti², L. Malafonte²

¹Dip. di Scienze Farmaceutiche ²Dip. di Ingegneria Chimica e Alimentare

Università degli Studi di Salerno via Ponte don Melillo 84084 Fisciano SA – ITALY

Blanching of foodstuffs is a thermal treatment, mainly applied in vegetable and fruit processing, with the primary goal of the inactivation of the enzymes responsible for color, flavor and textural changes. It is commonly required before different subsequent processing steps such as freezing, drying, or canning. Further benefits of blanching process can be a moderate reduction of the microbial load, a cleansing of the product, and an enhancement of the bioavailability of some food constituents.

The key processing variables for blanching are temperature and treatment-time, parameters that are strongly linked to the food matrix properties (density, specific heat, thermal conductivity). Two needs arise:

- to get the desired temperature as soon as possible (to minimize the thermal damage of the sample),
- to get an homogeneous heating of the sample (to avoid untreated and overheated zones).

The blanching carried out applying microwave heating seems to respond to both the requirements. Furthermore, to correctly develop the blanching treatments, a mathematical description of the process is highly desirable.

In this work, banana samples of defined geometry are subjected to blanching processes – conventional and microwave assisted – while the temperature histories are carefully monitored and recorded.

The blanching processes are performed by samples immersion in boiling water (conventional procedure) or by samples irradiation (microwave treatment) in a controlled oven for a limited time (the "blanching" phase), followed by immersion of the blanched samples in an ice bath (the "quenching" phase).

Both phases are modeled by writing the heat balance within the sample. Results confirm that the conventional blanching causes a moderate heating of the sample, in presence of remarkable thermal gradients, whereas the microwave process is faster than the conventional one and the sample heating is much more homogeneous.

Key-words: blanching, thermal effects, fruit process modeling.

Ringrazio i miei genitori per avermi dato la possibilità di raggiungere questa prima e importantissima tappa spensieratamente e mostrare sempre fiducia in me. Ringrazio le mie sorelle per aver trascorso con me ogni istante della mia vita. Ringrazio i miei nonni, i miei zii e i miei cugini per avermi supportato in questo percorso. Ringrazio Luca esserci sempre per incondizionatamente, per sopportarmi nei momenti di "ansia" e di vivere, come se fosse sua, ogni mia emozione. Ringrazio Rosanna per aver condiviso con me infinite ore di studio dandoci forza a vicenda, gli esami e questo magnifico giorno ("Auguri anche a te ingegné!!!"). Ringrazio Antonio, Elena, Pietro e Roberto per aver reso indimenticabili le lunghissime giornate universitarie. Ringrazio l'Ing. Gaetano Lamberti per avermi insegnato tanto e per essere stato sempre disponibile in questi anni e ringrazio l'Ing. Anna Angela Barba per avermi messo a disposizione le sue conoscenze e la sua pazienza durante il lavoro di tesi. Ringrazio Antonella Tortora per la magnifica collaborazione durante il lavoro di ricerca. Ringrazio tutti i ragazzi del Lab T5/A per aver condiviso con me questa splendida esperienza. Ringrazio la mia Amica di sempre e per sempre Azzurra ed Alessandra semplicemente per esserci. Ringrazio, inoltre, i ragazzi di Prima...Vera ASI e tutti coloro che ho conosciuto in questi tre anni. Questa non è che la prima importante tappa, spero di condividere con tutti voi le future esperienze splendide della mia vita.