

Facoltà di Ingegneria

Corso di Laurea in Ingegneria Chimica

Effetto del carico iniziale di principio attivo sulle cinetiche di idratazione e rilascio da compresse HPMC/TP

Tesi in **Principi di Ingegneria Chimica**

Relatori Candidato

Prof. Ing. Giuseppe Titomanlio Giuseppe Arpino

Ing. Gaetano Lamberti 164000170

Correlatore

Ing. Serafina Chirico

Anno Accademico 2007/2008

Questo testo è stato stampato in proprio, in Times New Roman La data prevista per la discussione della tesi è il 28/4/2008 Fisciano, 15/4/2008

Sommario

Sommario	I
Indice delle figure	III
Indice delle tabelle	V
Introduzione	1
1.1 Introduzione	2
1.1.1 La farmacologia	2
1.1.2 Principali vie di somministrazione dei farmaci	3
1.1.3 Forme a rilascio controllato	5
1.1.4 Sistemi monolitici rigonfiabili	6
1.2 Dati di letteratura	7
1.2.1 Swellable matrices for controlled drug delivery: gel-layer	7
behaviour, mechanisms and optimal performance[5].	7 12
1.3 Obiettivi del lavoro di tesi Materiali e metodi	
2.1 Materiali	13 14
2.1.1 Hydroxypropyl-Methylcellulose (HPMC)	1 4 14
2.1.2 Teofillina	15
2.2 Metodi	16
2.2.1 Preparazione delle forme farmaceutiche solide	$-\frac{10}{17}$
2.2.2 Tecnica sperimentale	18
Risultati e discussioni	23
2.1 Disultati	24
3.1.1 Profili di rilascio e idratazione	$-\frac{21}{24}$
3.1.2 Confronti con sistemi a diverso carico di TP	32
3.2 Discussioni	37

39
40
41
•

Sommario e indici. Pag. III

Indice delle figure

Figura 1. Rappresentazione delle vie di somministrazione farmacologiche possibili.	1
Figura 2. Rappresentazione schematica di un sistema a rilascio controllato dal	4
rigonfiamento. Il penetrante (A) entra nel polimero inizialmente vetroso (B) con	
una velocità v e forma un materiale tipo gel di spessore δ (t). Il peincipio attivo	
ncorporato (C) può diffondere attraverso lo strato di polimero rigonfiato[4]	7
Figura 3. Fotografía di una matrice cilindrica composta da hydroxypropyl	
methyl cellulose (HPMC) e buflomedil pyridoxalphosphate (BPP) al 60% w/w	9
Figura 4. Fotografie di matrici cilindriche composte da hydroxypropyl methyl	
cellulose (HPMC) e buflomedil pyridoxalphosphate (BPP) in 10% w/w (a), 20%	
w/w (b), 40% w/w (c), 80% w/w (d), dopo 300 minuti di immersione	. 10
Figura 5. Posizione dei fronti di erosione (cerchi), swelling (quadrati), e	
diffusione (triangoli) in funzione del tempo, rispetto al raggio della compressa	
secca. I dati sono relativi ad una matrice composta da HPMC e contenente il	1.0
40% w/w di BPP	
8	. 14
Figura 7 Formula chimica della teofillina.	
Figura 8. Pasticcatrici Speac serie PN [6].	
Figura 9. Preparazione sistema vetrini+compressa [7] Figura 10. Rimozione del vetrino superiore [7]	. 18 . 19
Figura 11. Rappresentazione della compressa sezionata, con indicazione dei	. 19
raggi medi considerati per ogni sezione [7]	10
Figura 12. Fasi di punzonatura e pesata del materiale [7].	. 19 . 20
Figura 13. Frazione massica di acqua (quadrati neri) e principio attivo (cerchi	. 20
pieni rossi) in funzione del raggio (sinistra) dopo 24 h. In basso la foto della	
compressa rigonfiata. Fotografia in dimensioni reali.	. 26
Figura 14. Frazione massica di acqua (quadrati neri) e principio attivo (cerchi	
pieni rossi) in funzione del raggio (sinistra) dopo 48 h. In basso la foto della	
compressa rigonfiata. Fotografia in dimensioni reali.	. 27
Figura 15. Frazione massica di acqua (quadrati neri) e principio attivo (cerchi	
pieni rossi) in funzione del raggio (sinistra) dopo 72 h. In basso la foto della	
compressa rigonfiata. Fotografia in dimensioni reali.	. 28
Figura 16. Frazione massica di acqua (quadrati neri) e principio attivo (cerchi	
pieni rossi) in funzione del raggio (sinistra) dopo 96 h. In basso la foto della	
compressa rigonfiata. Fotografia in dimensioni reali	. 29

Sommario e indici. Pag. V

Indice delle tabelle

Tabella 1. Confronto tra la nomenclatura USP e EP in relazione alla	
classificazione dell'HPMC[7].	15
Tabella 2. Proprietà dell'HPMC K15M[7]	15
Tabella 3 Proprietà fisiche e chimiche della teofillina.	16
Tabella 4. Dimensioni caratteristiche dei campioni utilizzati	18
Tabella 5. Procedura schematica e calcoli effettuati per la rilevazione delle	
masse [7]	21

Bibliografia

- 1. Wikipedia, l'enciclopedia libera, *farmacologia*, http://it.wikipedia.org/wiki/Farmacologia
- 2. Manuale Merck, *Farmacologia clinica*, http://www.msd-italia.it/altre/manuale/sez22/2982734b.html
- 3. Colombo P., Catellani P.L., Gazzaniga A., Menegatti E. Vidale E., *Principi di tecnologie farmaceutiche*, casa editrice Ambrosiana, 2004
- 4. Università degli studi di Parma, Dipartimento Farmaceutico, *Matrici polimeriche idrofile per il rilascio controllato di farmaco*, http://www.unipr.it/arpa/dipfarm/ricerca/tecnologia/matrici.html
- 5. Colombo P., Bettini R., Santi P. and Peppas N. A., Swellable matrices for controlled drug delivery: gel-layer behaviour, mechanisms and optimal performance, Pharmaceutical science & technology today 3 (6) 198-204 (2000)
- 6. Nunziata V., Validazione di una tecnica per la rilevazione di profili di acqua e principio attivo in compresse di HPMC, tesi di laurea in ingegneria chimica (2007).
- 7. Cascone S., Analisi delle cinetiche di idratazione e di rilascio di principi attivi da compresse di idrogeli, tesi di laurea in ingegneria chimica (2007).

Vorrei ringraziare soprattutto i miei genitori e mio fratello perché hanno sempre creduto in me e mi hanno sempre sostenuto nonostante mille difficoltà dandomi la forza di andare avanti come solo una vera famiglia sa fare, tutti i miei zii e i miei cugini, la mia nonna che pregava per i miei esami e i miei adorati nonni che mi proteggevano dall'alto. Vorrei ringraziare i miei relatori e la mia correlatrice per la loro grande disponibilità e per il loro aiuto, perché mi hanno aiutato a crescere sia come persona che come studente. Vorrei ringraziare tutti i miei amici dell'associazione universitaria "Zenit", capitanati da Generoso, e in particolar modo Paolo, che mi ha aiutato nelle lunghe ore passate in laboratorio tra studio e esperimenti, la mia amica Adele e il suo fidanzato che mi hanno sopportato in questi anni e con i quali ho condiviso bellissimi momenti di studio e di vita universitaria così come Antonio e Carla, Fedele e Antonella, Marziale e Marilena, Vito, Gaetana e "zia Katia", tutti i miei amici che non vivono l'università con me ma che dividono la loro vita insieme a me come Angelo, Davide (che aveva pronosticato che avrei sostenuto l'ultimo esame per ben 7 volte e ci ha indovinato), l'avv.Enrico, l'ing. Nicola e la sua fidanzata (futuro ing. anche lei) Daniela, la dott.ssa Daniela, Andrea, il dott. Alfonso e tutti i miei amici. Mi perdoni chi ho dimenticato ma è impossibile ringraziare tutti...