Caratterizzazione del PoliOssiMetilene per il processo di estrusione

Elena Orlan

Elena Orlando

UNIVERSITÀ DEGLI STUDI DI SALERNO

Facoltà di Ingegneria

Corso di Laurea in Ingegneria Chimica

Caratterizzazione del PoliOssiMetilene per il processo di estrusione

Tesi in Principi di Ingegneria Chimica

Relatori:

Prof. Ing. Giuseppe Titomanlio

Prof. Ing. Gaetano Lamberti

Correlatore:

Ing. Felice De Santis

Anno Accademico 2008/2009

Candidato:

Elena Orlando

matricola 0610200012

A Nonna Elena...

Questo testo è stato stampato in proprio, in Times New Roman La data prevista per la discussione della tesi è il 21 Dicembre 2009 Fisciano, 10 Dicembre 2009

Sommario

Sommario	I
Indice delle figure	III
Indice delle tabelle	VII
Introduzione	1
1.1 I polimeri termoplastici semicristallini	2
1.2 La cristallizzazione dei polimeri	3
1.2.1 Le espressioni della cristallinità	3
1.3 Il processo di estrusione	5
1.3.1 Zone operative dell'estrusore	6
1.3.2 Il processo di estrusione per la produzione di tondi in resina acetalica.	8
1.4 Stato dell'arte	10
1.5 Obiettivo della tesi	12
Materiali e metodi	13
2.1 Materiali	14
2.2 Calorimetria Differenziale a Scansione (DSC)	16
2.2.1 Fondamenti teorici	16
2.2.2 Misure isoterme (DSC)	18
2.2.3 Misure isoterme: elaborazione dati	19
2.2.4 Misure a bassa velocità di raffreddamento (DSC)	21

2.2.5 Misure a bassa velocità di raffreddamento (DSC): elaborazione dati	22
2.3 Raffreddamenti veloci: quench	_ 24
2.3.1 Fondamenti teorici	24
2.3.2 Descrizione apparecchiatura	24
2.3.3 Unità di rilevazione ottica	27
2.3.4 Quench: elaborazione dati	28
2.4 Diffrattometria ad ampio angolo dei raggi X (WAXS)	_ 31
2.4.1 Fondamenti teorici	31
2.4.2 WAXS: Elaborazione dati	32
2.5 Caratterizzazione reologica	_ 34
2.5.1 Esperimenti di reologia rotazionale	34
Risultati e discussioni	37
3.1 Calorimetria Differenziale a Scansione (DSC)	_ 38
3.1.1 Misure isoterme: analisi dei dati	38
3.1.2 Misure isoterme: risultati	39
3.2 Quench	_ 50
3.2.1 Quench: analisi dei dati	50
3.3 Diffrattometria ad ampio angolo dei raggi X (WAXS)	_ 58
3.3.1 Analisi dei dati	58
3.4 Caratterizzazione reologica: analisi dei dati	_ 62
Conclusioni	65
4.1 Conclusioni	_ 66
Bibliografia	69

Indice delle figure

Figura 1. Schema cinetico relativo alla cristallizzazione primaria.	3
Figura 2. Schema di un estrusore monovite	5
Figura 3. Schema di un estrusore bivite.	6
Figura 4. Schema di un estrusore in base alle caratteristiche fisiche del polimero.	6
Figura 5. Schema di un estrusore in base alle caratteristiche geometriche della vite	7
Figura 6. Produzione di tondi in resina acetalica presso l'azienda C.M.P. S.r.l	9
Figura 7. Ossimetilene, monomero del POM.	14
Figura 8. Schematizzazione DSC.	17
Figura 9. Termogramma calorimetrico (DSC).	17
Figura 10. Protocollo sperimentale per le prove calorimetriche in condizioni isoterme.	19
Figura 11. Isoterma al DSC prima della sottrazione della linea di base	20
Figura 12. Isoterma al DSC dopo la sottrazione della linea di base	21
Figura 13. Protocollo sperimentale per le prove calorimetriche in condizioni non isoterme.	22
Figura 14. Scansione prima della sottrazione della linea di base	23
Figura 15. Scansione dopo la sottrazione della linea di base	23
Figura 16. Unità di fusione e raffreddamento	25
Figura 17. Quench: schema portacampione	26
Figura 18. Schema di assemblaggio linea ottica	27
Figura 19. Segnali ottici e temperatura per una prova in convezione forzata P=5 bar Sniatal (dT/dt=3.9 K/s).	28
Figura 20. Zoom risultato sperimentale, segnali ottici e temperatura per una prova in convezione forzata P=5 bar Sniatal (dT/dt=3.9 K/s).	29

Figura 21. Smoothing dei dati sperimentali, temperatura per una prova in convezione forzata P=5 bar Sniatal (dT/dt=3.9 K/s)	30
Figura 22. Velocità di raffreddamento in funzione della temperatura, per una prova in convezione forzata P=5 bar Sniatal (dT/dt=3.9 K/s)	30
Figura 23. Diffrazione dei raggi X da parte di un cristallo	31
Figura 24. Intensità in funzione dell'angolo (Sniatal).	33
Figura 25. Intensità in funzione dell'angolo (Tenac-C)	33
Figura 26. Risultati sperimentali: viscosità dello Sniatal	34
Figura 27. Risultati sperimentali: viscosità del Tenac-C.	35
Figura 28. Picco relativo alle prove isoterme (Sniatal)	40
Figura 29. Picco relativo alle prove isoterme (Tenac).	40
Figura 30. Evoluzione della cristallinità relativa per gli esperimenti isotermi (Sniatal).	41
Figura 31. Evoluzione della cristallinità relativa per gli esperimenti isotermi (Tenac-C)	41
Figura 32. Analisi di Avrami relativa alle prove isoterme (Sniatal).	42
Figura 33. Analisi di Avrami relativa alle prove isoterme (Tenac-C).	43
Figura 34. Tempi di semicristallizzazione sperimentali e Avrami (Sniatal)	44
Figura 35. Tempi di semicristallizzazione sperimentali e Avrami (Tenac-C)	45
Figura 36. Confronto dei tempi di semicristallizzazione.	46
Figura 37. Scansioni DSC (Sniatal)	47
Figura 38. Scansioni DSC (Tenac-C)	47
Figura 39. Evoluzione della cristallinità in condizioni non isoterme (Sniatal)	48
Figura 40. Evoluzione della cristallinità in condizioni non isoterme (Tenac- C).	49
Figura 41. Risultato della prova in condizioni di convezione naturale (Sniatal) dT/dt = 0.16 K/s	50
Figura 42. Risultato delle prova in condizioni di convezione forzata: aria P = 5 bar (Sniatal) dT/dt = 3.0 K/s	51
Figura 43. Risultato prova con spray aria/acqua P = 5 bar (Sniatal) dT/dt = 18 K/s	51
Figura 44. Risultato prova in condizioni di convezione naturale (Tenac-C) dT/dt =0.30 K/s	52
Figura 45. Risultato prova in condizioni di convezione forzata: aria = 5 bar (Tenac-C) dT/dt = 3.0 K/s.	52

Figura 46. Risultato prova in condizioni di convezione forzata: Spray aria/acqua $P = 5$ bar (Tenac-C) dT/dt = 20 K/s.	. 53
Figura 47. Temperatura di cristallizzazione dello Sniatal in funzione della velocità di raffreddamento per le prove DSC non isoterme.	. 55
Figura 48. Temperatura di cristallizzazione del Tenac-C in funzione della velocità di raffreddamento per le prove DSC non isoterme.	. 55
Figura 49. Temperatura di cristallizzazione (DSC), temperatura di inizio e fine cristallizzazione (Quench) relative allo Sniatal	. 56
Figura 50. Temperatura di cristallizzazione (DSC), temperatura di inizio e fine cristallizzazione (Quench) relative al Tenac-C.	. 56
Figura 51. Risultato Rx in condizioni di convezione naturale	. 58
Figura 52. Risultato Rx in condizioni di convezione forzata, aria $P = 5$ bar	. 59
Figura 53. Risultato Rx, spray aria/acqua P = 5 bar.	. 59
Figura 54. Risultato Rx in condizioni di convezione naturale	. 60
Figura 55. Risultato Rx in condizioni di convezione forzata, aria $P = 5$ bar	. 60
Figura 56. Risultato Rx, spray aria/acqua P = 5 bar.	. 61
Figura 57. Grado cristallino in funzione della velocità di raffreddamento	. 61
Figura 58. Viscosità dello Sniatal: risultati sperimentali e modello	. 63
Figura 59. Viscosità del Tenac-C: risultati sperimentali e modello	. 64

Indice delle tabelle

Tabella 1. Specifiche Sniatal M4 (Rhodia)	14
Tabella 2. Specifiche Tenac-C (Asahi Thermofil)	15
Tabella 3. Parametri caratterizzanti gli esperimenti isotermi (Sniatal)	43
Tabella 4. Parametri caratterizzanti gli esperimenti isotermi (Tenac-C)	44
Tabella 5. Parametri caratterizzanti gli esperimenti di quench	54
Tabella 6. Parametri reologici per i materiali analizzati	64

Bibliografia

- 1. Magill J. H., New method for following rapid rates of crystallization. I Poly (hexamethylene adipamide), *Polymer* 2–221 (1961)
- Magill J. H., New technique for following rapid rates of crystallization. I Isottatic polyprolylene, *Polymer* 3–35 (1962)
- Brucato V., Crippa G, Piccarolo S., Titomanlio G., Crystallization of polymer melts under fast cooling. I: Nucleated polyamide 6, *Polymer Engineering and Science* 31 1411–1416 (1991)
- 4. Ding Z., Spruiell J. E., An experimental method for studying non isothermal crystallization of polymer at very high cooling rates, *Journal of Polymer Science* **34** 2783–2804 (1996)
- Ding Z., Spruiell J. E., Interpretation of the non isothermal crystallization kinetics of polypropylene using a power law nucleation rate function, *Journal of Polymer Science* 35 1077–1093 (1997)
- 6. Giannattasio A., Cristallizzazione di polipropilene isotattico con acquisizione on-line durante raffreddamenti veloci, Tesi di laurea in Ingegneria Chimica, Università degli studi di Salerno (2001)
- Hisakatsu H., Kohji T., Structural changes in non isothermal crystallization of melt cooled polyoxymethylene evolution of lamellar stacking structure derived from SAXS and WAXS data analysis *Polymer* 44 2159–2168 (2003)
- Xu W., Ge M., He P., Non isothermal Crystallization kinetics of Polyoxymethilene/ Montmorilonite Nanocomposite Journal of Applied Polymer Science 82 2281-2289 (2001)

Ringrazio il Professore Giuseppe Titomanlio per avermi dato l'opportunità di svolgere il lavoro di tesi nel suo team di ricerca.

Un ringraziamento speciale è rivolto al Professore Gaetano Lamberti, docente attento e premuroso nei riguardi dei suoi studenti, e all'Ingegnere De Santis per essere stato non solo una guida professionale ma soprattutto un supporto morale durante tutto il percorso.

Ringrazio i miei genitori per avermi dato la possibilità di tagliare questo traguardo e tutte le persone che hanno vissuto e costruito con me questo cammino.

Grazie a colui che in qualsiasi momento, di sconforto e di gioia, non mi ha mai abbandonata.

Elena Orlando