

Idratazione e rilascio da matrici farmaceutiche a base di idrogeli: studio mediante analisi gravimetrica e meccanica

Emanuela Della Corte

UNIVERSITÀ DEGLI STUDI DI SALERNO

Facoltà di Ingegneria Dipartimento di Ingegneria Industriale

Corso di Laurea in Ingegneria Chimica

Idratazione e rilascio da matrici farmaceutiche a base di idrogeli: studio mediante analisi gravimetrica e meccanica

Tesi in **Principi di Ingegneria Chimica**

Relatori:	Candidato
Prof. Ing. Giuseppe Titomanlio	Emanuela Della Corto
Prof. Ing. Gaetano Lamberti	matricola 0612200229
Correlatore:	
Ing. Sara Cascone	

Anno Accademico 2013/2014

Questo testo è stato stampato in proprio, in Times New Roman La data prevista per la discussione della tesi è il 18/12/2014 Fisciano, 11/12/2014

Sommario

Sommario	I
Indice delle figure	III
Indice delle tabelle	VII
Abstract	IX
Introduzione	1
1.1 Farmacologia	2
1.2 Il rilascio controllato dei farmaci	2
1.2.1 Forme farmaceutiche per il rilascio controllato	3
1.2.2 Idrogeli	4
1.3 Stato dell'arte	5
1.3.1 Metodo gravimetrico	5
1.3.2 Dal metodo gravimetrico al metodo meccanico	7
1.4 Obiettivi del lavoro	9
Materiali, apparecchiature e metodi	11
2.1 Materiali	12
2.1.1 HPMC	12
2.1.2 Teofillina	13
2.1.3 Mezzi di dissoluzione	14
2.2 Apparecchiature	15
2.2.1 Dissolutore	15

Pag. II	Idratazione e rilascio da matrici farmaceutiche	E. Della Corte
	2.2.2 HPLC (High Performance Liquid Chromatography)	15
	2.2.3 Texture Analyzer	16
2.3	Metodi	17
	2.3.1 Preparazione matrici	17
	2.3.2 Preparazione sistemi semioverall e dissoluzione	17
	2.3.3 Prove gravimetriche	18
	2.3.4 Metodi analitici	19
	2.3.4 Prove meccaniche con Texture Analyzer	24
	2.3.5 Analisi delle dimensioni	27
Risul	tati e discussione	29
3.1	Analisi gravimetrica	30
3.2	Analisi meccanica	36
3.3	Analisi dimensionale	42
Conc	lusioni	45
Bibli	ografia	49

Sommario e indici. Pag. III

Indice delle figure

Figura 1. Le fasi della farmacocinetica	2
Figura 2. Rilascio controllato del farmaco	3
Figura 3. Diffusione nelle matrici rigonfiabili	5
Figura 4. Frazione massica d'acqua lungo il raggio della compressa	6
Figura 5. Lavoro di penetrazione lungo il raggio della compressa	7
Figura 6. Contenuto d'acqua lungo il raggio della compressa	8
Figura 7. Contenuto d'acqua vs lavoro di penetrazione	9
Figura 8. Struttura dell' HPMC	12
Figura 9. Struttura della teofillina	14
Figura 10. Immagine del dissolutore Sotax	15
Figura 11. Immagine dell' HPLC	16
Figura 12. Immagine del Texture Analyzer	17
Figura 13. Immagine di un sistema semioverall immerso nel dissolutore	18
Figura 14. Rappresentazione della punzonatura delle compresse	18
Figura 15. Esempio di cromatogramma	20
Figura 16. Cromatogrammi taratura a pH=6.53 (acqua)	21
Figura 17. Cromatogrammi taratura a pH=1	22
Figura 18.Cromatogrammi taratura a pH=6.8	23
Figura 19. Retta di taratura per pH=6.53 (acqua)	24
Figura 20. Penetrazione della compressa al Texture Analyzer	25
Figura 21. Rappresentazione di una compressa rigonfiata in seguito a dissoluzione	25
Figura 22. Diagramma forza contro spostamento ottenuto tramite il Texture Analyzer	26

Figura 23. Diagramma % acqua contro penetrazione a diversi raggi per una prova a 2 ore
Figura 24. Analisi dimensionale di una foto
Figura 25. Percentuale di farmaco rilasciato ad ogni tempo d'immersione30
Figura 26 . Frazioni massiche residue rispetto il raggio della compressa dopo 2 ore d'immersione
Figura 27. Frazioni massiche residue rispetto il raggio della compressa dopo 3 ore d'immersione
Figura 28. Frazioni massiche residue rispetto il raggio della compressa dopo 4 ore d'immersione
Figura 29. Frazioni massiche residue rispetto il raggio della compressa dopo 6 ore d'immersione
Figura 30. Frazioni massiche residue rispetto il raggio della compressa dopo 8 ore d'immersione
Figura 31. Frazioni massiche residue rispetto il raggio della compressa dopo 24 ore d'immersione
Figura 32. Massa d'acqua assorbita a seguito di ciascun tempo d'immersione35
Figura 33. Risultati prove meccaniche dopo 2 ore d'immersione: (a) forzapenetrazione; (b) acqua-penetrazione
Figura 34 . Risultati prove meccaniche dopo 3 ore d'immersione: (a) forzapenetrazione; (b) acqua-penetrazione
Figura 35. Risultati prove meccaniche dopo 4 ore d'immersione: (a) forzapenetrazione; (b) acqua-penetrazione
Figura 36. Risultati prove meccaniche dopo 6 ore d'immersione: (a) forzapenetrazione; (b) acqua-penetrazione
Figura 37. Risultati prove meccaniche dopo 8 ore d'immersione: (a) forzapenetrazione; (b) acqua-penetrazione
Figura 38. Foto con relativo contour sovrapposto: 2 ore d'immersione40
Figura 39. Foto con relativo contour sovrapposto: 3 ore d'immersione40
Figura 40. Foto con relativo contour sovrapposto: 4 ore d'immersione40
Figura 41. Foto con relativo contour sovrapposto: 6 ore d'immersione41
Figura 42. Foto con relativo contour sovrapposto: 8 ore d'immersione41
Figura 43. Foto con relativo contour sovrapposto: 24 ore d'immersione41
Figura 44. Analisi dimensionale di una foto effettuata dopo 2 ore d'immersione 42
Figura 45. Andamento dell'altezza lungo il raggio delle compresse ad ogni tempo d'immersione
Figura 46. Andamento del diametro delle compresse con il tempo d'immersione43

Sommario e indici.	Pag. V
Figura 47. Analisi dimensionale della compressa dopo 24 ore	44

Sommario e indici. Pag. VII

Indice delle tabelle

Tabella 1. Valori delle costanti a _{1,} a ₂ e a ₃	9
Tabella 2. Proprietà dell'HPMC K15M	13
Tabella 3. Proprietà della teofillina	14
Tabella 4. Parametri operativi dell'HPLC	19
Tabella 5. Valori della costante di taratura	24
Tabella 6. Valori della % di farmaco rilasciato ad ogni tempo d'immersione	30
Tabella 7. Massa d'acqua assorbita a seguito di ciascun tempo d'immersione	36
Tabella 8. Valori ottenuti dall'analisi dimensionale effettuata dopo 2 ore d'immersione	42
Tabella 9. Valore medio del diametro ad ogni tempo d'immersione	44
Tabella 10. Valori ottenuti dall'analisi dimensionale effettuata dopo 24 ore	44

Abstract

Pharmaceutical forms based on hydrogels are widely used for controlled release of drugs, due to their ability to swell when they enter in contact with water. In fact, when the gel layer is formed, the drug contained in the matrix can diffuse with a controlled release kinetics.

In this work theophylline has been used as drug and HPMC K15M as hydrogel. The two compounds, as powders, have been mixed (50% wt/wt) to produce by compression a tablet of about 175 mg. To simulate the drug release from a tablet, its center has been attached at the center of a slide. The system has been immersed in a dissolution medium, with a temperature of 37°C, that simulates the gastrointestinal environment (pH=1 for the first two hours, pH=6.8 for the remaining time). The immersion times have been: 2, 3, 4, 6, 8 and 24 hours.

The gravimetric method has been used to evaluate the mass amounts of the three components (polymer, drug, and water) in the tablet after the dissolution. The dissolution medium has been analyzed by HPLC to evaluate the release of drug in the time. For every immersion time the tablet has been sectioned, to obtain annular section plus the core. Each section has been put on slides with a known weight, then dried to evaluate the water absorbed, finally they have been totally dissolved in distilled water. This solution has been analyzed by HPLC to check the amount of active compound contained in each section. As a result it has been possible to obtain the concentrations profiles of drug, polymer, and water versus the radius of the tablet.

Mechanical tests has been performed by a Texture Analyzer to obtain more information on water content of the tablet after every immersion time. The force that the probe of the Texture applies to penetrate the tablet has been correlated to the water content. Performing this test for some radii, it has been possible to know the axial water content of the tablet for each radial position and for all the immersion time.

Moreover, for each dissolution time a picture of the tablet has been taken to evaluate the swollen matrix size (diameter and height) by an image analysis technique.

Bibliografia

- 1. Barba, A. A., d'Amore, M., Chirico, S., Lamberti, G., & Titomanlio, G., Swelling of cellulose derivative (HPMC) matrix systems for drug delivery. Carbohydrate Polymers, 78 (3), 469–474 (2009).
- 2. Lamberti G., Cascone S., Cafaro M.M., Titomanlio G., D'Amore M., Barba A.A., Measurements of water content in hydroxypropyl-methylcellulose based hydrogels via texture analysis, Carbohydrate Polymers, 92, 765-768 (2013).
- 3. Cascone et al., Measurements of non-uniform water content inhydroxypropyl-methyl-cellulose based matrices via texture analysis, Carbohydrate Polymers 103 (2014) 348–354
- 4. [Nuovi Idrogeli per l'Ingegneria Tissutale ed il Drug Delivery, (2010) a web-book available on] http://dspace-unipr.cineca.it/bitstream/1889/991/2/Introduzione
- 5. Siepmann, J., & Peppas, N., Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). *Advanced Drug Delivery* Reviews, 48 (2–3), 139–157 (2001).
- 6. [Materiali per il rilascio controllato: idrogeli, a web-book available on] https://www.docenti.unina.it
- 7. Cascone S., Analisi delle cinetiche di idratazione e di rilascio di principi attivi da compresse di idrogeli, Tesi di laurea in ingegneria chimica (2007).

Ringrazio il professore Lamberti per avermi accolto nel suo laboratorio, in cui ho potuto conoscere professionisti ma soprattutto persone da cui imparare molto. In particolare ringrazio Sara, guida insostituibile e senza la quale oggi probabilmente non sarei qui.

Il grazie più grande va alla mia famiglia che mi ha insegnato i veri valori, che crede in me più di quanto ci creda io e che da sempre mi supporta e mi sopporta.

Ringrazio gli amici, in particolare quelli che mi hanno accompagnata in questo percorso universitario, e a tal proposito un grazie speciale a StudentIngegneria.