Modellazione del rilascio di molecole e biomolecole da sistemi a base di s-PS

Carmine Govetosa

Carmine Govetosa

UNIVERSITÀ DEGLI STUDI DI SALERNO

Facoltà di Ingegneria

Corso di Laurea in Ingegneria Chimica

Modellazione del rilascio di molecole e biomolecole da sistemi a base di s-PS

Tesi in Principi di Ingegneria Chimica

Relatore:

Candidato:

Prof. Ing. Gaetano Lamberti

Carmine Govetosa

matricola 0610200263

Anno Accademico 2009/2010

A mio padre, a mia sorella e alla mia cara mamma, che da lassù veglia su di me...

Questo testo è stato stampato in proprio, in Times New Roman

La data prevista per la discussione della tesi è il 22 febbraio 2011 Fisciano, 14 febbraio 2011

Sommario

Sommario	I
Indice delle figure	III
Introduzione	1
1.1 Generalità	2
1.2 Stato dell'arte	4
1.3 Obiettivi	12
Materiali e metodi	15
2.1 Materiali	16
2.1.1 Polistirene sindiotattico	16
2.1.2 Acido acetilsalicilico	18
2.1.3 Carvacrolo	23
2.2 Metodi	24
2.2.1 Parte sperimentale	24
2.2.2 Il COMSOL Multiphysics [®] 3.5	26
Risultati e discussione	
3.1 Acido acetilsalicilico	34
3.1.1 Modello	34
3.1.2 Risultati e discussione	40
3.2 Carvacrolo	41
3.2.1 Modello	43
3.2.2 Risultati e discussione	53

Conclusioni	
4.1 Conclusioni	60
Bibliografia	61

Indice delle figure

Figura 1. Rappresentazione schematica delle principali condizioni di cristallizzazione e interconversione per le varie fasi del polistirene sindiotattico ottenute da melt-processing [2].	5
Figura 2. Rappresentazione schematica delle principali condizioni di cristallizzazione e interconversione per le varie fasi del polistirene sindiotattico ottenute da solution-processing[2]	5
Figura 3. Esempio di co-cristallo clatrato s-PS/1,2-dicloroetano[6]	6
Figura 4. Vista lungo c e perpendicolare al piano ac dello spazio libero presente sottoforma di cavità nella fase cristallina in forma δ . Ciascuna cavità è confinata tra 10 anelli fenilici: 4 al di sotto delle cavità(altezza media 0), 4 al di sopra delle cavità(altezza media c = 7.7 Å) e 2 con altezza media pari all'altezza media della cavità(c/2). R, eliche destrorse; L, eliche sinistrorse; d ₀₁₀ , distanza tra i centri delle catene[2].	7
Figura 5. Rappresentazione schematica della fase cristallina δ dell' <i>s-PS</i> . La prima vista è parallela all'asse c, mentre la seconda è perpendicolare allo stesso [4].	7
Figura 6. Rappresentazione schematica della fase cristallina ε dell's-PS. La prima vista è parallela all'asse c, mentre la seconda è perpendicolare allo stesso[4].	8
Figura 7. A destra un co-cristallo di <i>s-PS</i> in forma δ e CHCl ₃ con piano orientato perpendicolarmente all'asse delle catene, mentre a sinistra un co-cristallo di <i>s-PS</i> in forma ϵ e CHCl ₃ con piano disposto parallelamente all'asse delle catene [4]	9
Figura 8. Tipologie di orientazione degli assi delle catene polimeriche in fase cristallina. Da sinistra verso destra abbiamo le orientazioni $a_{//} c_{//}, a_{//} c_{\perp} e a_{\perp} c$ [5]1	1
Figura 9. Reazione di formazione del polistirene1	6
Figura 10. Stereoisomerismo del polistirene 1	7
Figura 11. Formula di struttura dell'acido acetilsalicilico o aspirina 1	8
Figura 12. Sintesi di Kolbe per la produzione dell'acido salicilico 1	9
Figura 13. Reazione di produzione dell'acido acetilsalicilico 1	9

Figura 14. Formule di struttura del carvacrolo $[C_6H_3CH_3(OH)(C_3H_7)]$, del timolo, p-cimene e y-terpineme.	23
Figura 15. Rappresentazione schematica di un generico polimero semicristallino prima e dopo il caricamento.	24
Figura 16. Screenshoot 1: Model Navigator	.29
Figura 17. Screenshot 2: Costanti	. 29
Figura 18. Screenshot 3: Definizione delle dimensioni del sistema dominio	.30
Figura 19. Dominio del sistema	.30
Figura 20. Screenshot 3: Espressioni globali	.31
Figura 21. Screenshot 4: Espressioni integrali	. 31
Figura 22. Screenshot 5: Settaggi per il Sottodominio-Diffusione(chdi). Esempio per la fase amorfa	32
Figura 23. Screenshot 6: Condizioni al contorno per il Sottodominio- Diffusione(chdi2). Esempio per la fase amorfa.	32
Figura 24. Curva di modello ottenuta con il set di parametri inizializzato e dati sperimentali.	38
Figura 25. Curve modellistiche del rilascio di aspirina parametrizzate sul coefficiente di trasporto.	39
Figura 26. Curve modellistiche del rilascio di aspirina parametrizzate sulla diffusività	39
Figura 27. Curva di modello ottimizzata e dati sperimentali	. 40
Figura 28. A sinistra la curva di modello relativa alla concentrazione di <i>ASA</i> nella fase amorfa (in <i>COMSOL C</i> = $m_res_C/[(1-csi)*rho_C]$. A destra la curva di modello relativa alla concentrazione di <i>ASA</i> nella fase cristallina (in <i>COMSOL Q</i> = m res $Q/(csi*rho Q)$	41
Figura 29. Grafico delle assorbanze in funzione del numero d'onda.	42
Figura 30. Dati sperimentali di partenza in termini di assorbanze	43
Figura 31. Curva di modello iniziale e dati sperimentali relativi alla concentrazione in fase amorfa.	47
Figura 32. Curva di modello iniziale e dati sperimentali relativi alla concentrazione in fase amorfa.	47
Figura 33. Curva di modello iniziale e dati sperimentali relativi al rilascio	. 48
Figura 34. Grafico dei valori del coefficiente di ripartizione provenienti dai dati sperimentali ($K=C_{exp}/Q_{exp}$)	49
Figura 35. Curva di modello ottenuta con K=0.087 Kg _{Am} /Kg _{Cr} e dati sperimentali relativi alla fase cristallina.	. 50

Figura 36. Curva di modello ottenuta con K=0.087 Kg _{Am} /Kg _{Cr} e dati sperimentali relativi alla concentrazione in fase amorfa	50
Figura 37. Curva di modello ottenuta con K=0.087 Kg _{Am} /Kg _{Cr} e dati sperimentali relativi al rilascio.	51
Figura 38. Grafico della concentrazione sperimentale in fase amorfa in funzione di quella sperimentale in fase cristallina	52
Figura 39. A sinistra curva $Q_a v \operatorname{con} Kc1 = 1*10^{-5} \operatorname{s}^{-1} \operatorname{e} diffusivity = 3*10^{-17} \operatorname{m}^2 \operatorname{s}^{-1}$. A destra $Q_a v \operatorname{con} Kc1 = 1 \operatorname{s}^{-1} \operatorname{e} diffusivity = 3*10^{-17} \operatorname{m}^2 \operatorname{s}^{-1}$.	54
Figura 40. A sinistra curva C_{av} con $Kcl=1*10^{-5} s^{-1}$ e diffusivity= $3*10^{-17} m^2 s^{-1}$. A destra C_{av} con $Kcl=1 s^{-1}$ e diffusivity= $3*10^{-17} m^2 s^{-1}$.	54
Figura 41. A sinistra curva $R_a v \operatorname{con} Kcl = 1*10^{-5} \operatorname{s}^{-1} \operatorname{e} diffusivity = 3*10^{-17} \operatorname{m}^2 \operatorname{s}^{-1}$. A destra $R_a v \operatorname{con} Kcl = 1 \operatorname{s}^{-1} \operatorname{e} diffusivity = 3*10^{-17} \operatorname{m}^2 \operatorname{s}^{-1}$.	54
Figura 42. Curva di modello ottimizzata e dati sperimentali relativi alla concentrazione in fase cristallina	55
Figura 43. Curva di modello ottimizzata e dati sperimentali relativi alla concentrazione in fase amorfa.	56
Figura 44. Curva di modello ottimizzata e dati sperimentali relativi al rilascio di carvacrolo.	56

Bibliografia

- 1. Ivan Galdi. Rilascio di principi attivi da sistemi a matrice. Analisi con il metodo degli elementi finiti. Tesi di Laurea Specialistica in Ingegneria Chimica, Università degli Studi di Salerno (2009).
- 2. Giuseppe Milano & Gaetano Guerra, Understanding at molecular level of nanoporous and co-crystalline materials based on syndiotactic polystyrene, *Progress in Materials Science* **54**, 68–88 (2009).
- 3. C. Daniel, T. Montefusco, P. Rizzo, P. Musto,G. Guerra, Crystallization from the amorphous form of the nanoporous 3 form of syndiotactic polystyrene, *Polymer* **51**, 4599-4605 (2010).
- Oreste Tarallo, Maria Maddalena Schiavone, Vittorio Petraccone, Polymorphism of the co-crystalline forms of syndiotactic polystyrene with chloroform: Crystal structure of the d clathrate, *European Polymer Journal* 46, 456–464 (2010).
- 5. Alexandra R. Albunia, Paola Rizzo, Oreste Tarallo, Vittorio Petraccone, Gaetano Guerra, Layers of close-packed alternated enantiomorphous helices and the three different uniplanar orientations of syndiotactic polystyrene, *Macromolecules* **41**, 8632-8642 (2008).
- 6. Claudio De Rosa, Paola Rizzo, Odda Ruiz de Ballesterosa, Vittorio Petraccone, Gaetano Guerra, Crystal structure of the clathrate d form of syndiotactic polystyrene containing 1,2-dichloroethane, *Polymer* **40**, 2103–2110 (1999).
- 7. http://www.pslc.ws/italian/styrene.htm, Copyright© 1995/1996, Department of Polymer Science|University of Southern Mississippi.
- 8. Christophe Daniel, "Aerogeli e Membrane Innovative per le Tecnologie Energetiche", Università degli Studi di Salerno, XV SCUOLA NAZIONALE DI SCIENZA DEI MATERIALI, Bressanone,21-30 settembre 2009.
- 9. http://www.minerva.unito.it/Storia/aspirina/Aspirina.html.
- 10. Sibel Tunç, Osman Duman, Preparation of *active* antimicrobial methyl cellulose/carvacrol/montmorillonite nanocomposite films and investigation of carvacrol release, *LWT Food Science and Technology* **44**, 465-472 (2011).

- M. De Vincenzi, A. Stammati, A. De Vincenzi, M. Silano, Constituents of aromatic plants: carvacrol, *Fitoterapia* 75, 801–804 (2004).
- Gaetano Lamberti, Cristallizzazione in flusso e trasformazione di polimeri termoplastici, Tesi di Dottorato in Ingegneria Chimica, Università degli Studi di Salerno (2000)
- 13. *COMSOL Multiphysics User's Guide*, © COPYRIGHT 1998-2008 by COMSOL AB. All rights reserved.

Un grazie di cuore a tutti coloro che in questi ultimi anni hanno saputo supportarmi e sopportarmi:

agli amici di sempre, quelli conosciuti strada facendo, prima al Liceo, e poi all'Università.

al Prof. Gaetano Lamberti e a tutto lo staff del laboratorioT5A.

"Memento audere semper"