TABLE 5-17	Mass-Transfer	Correlations for	r a Sinale Flat	Plate or Disk-	-Transfer to or fr	om Plate to Fluid

	<u>_</u>		
Situation	Correlation	Comments E = Empirical, S = Semiempirical, T = Theoretical	References*
A. Laminar, local, flat plate, forced flow	$\begin{split} N_{Sh,x} = & \frac{k'x}{D} = 0.323 (N_{Re,x})^{1/2} (N_{Sc})^{1/3} \\ \text{Coefficient } 0.332 \text{ is a better fit.} \end{split}$	[T] Low M.T. rates. Low mass-flux, constant property systems. $N_{Sh,x}$ is local k . Use with arith- metic difference in concentration. Coefficient 0.323 is Blasius' approximate solution.	[77] p. 183 [87] p. 526 [138] p. 79 [140] p. 518
		$N_{Re,x} = \frac{xu_{\infty}\rho}{\mu}, x = \text{length along plate}$	[141] p. 110
Laminar, average, flat plate, forced flow	$N_{Sh,avg} = \frac{k'_m L}{D} = 0.646 (N_{Re,L})^{1/2} (N_{Sc})^{1/3}$	$N_{Re,L} = \frac{Lu_{\infty}\rho}{\mu}$, 0.664 (Polhausen)	[91] p. 480
	Coefficient 0.664 is a better fit. k'_m is mean mass-transfer coefficient for dilute systems.	is a better fit for N_{Sc} > 0.6, $N_{Rc,x}$ < 3 × 10 ⁵ .	
<i>j</i> -factors	$j_D = j_H = \frac{f}{2} = 0.664 (N_{Re,L})^{-1/2}$	[S] Analogy. $N_{sc} = 1.0, f = \text{drag coefficient. } j_D$ is defined in terms of k'_m .	[141] p. 271
B. Laminar, local, flat plate, blowing or suction and forced flow	$N_{Sh,x} = \frac{k'x}{D} = (\text{Slope})_{y=0} (N_{Re,x})^{1/2} (N_{Se})^{1/3}$	[T] Blowing is positive. Other conditions as above. $\frac{u_o}{u_\infty} \sqrt{N_{Re,x}}$ 0.6 0.5 0.2500 -2.5	[77] p. 185
		$\frac{1}{(\text{Slope})_{y=0}} \frac{1.0 \times 10^{-0.13} \times 10^{-0.12} $	[140] p. 271
C. Laminar, local, flat plate, natural convection vertical plate	$\begin{split} N_{Sh,x} &= \frac{k'x}{D} = 0.508 N_{Sc}^{1/2} (0.952 + N_{Sc})^{-1/4} N_{Gr}^{1/4} \\ N_{Gr} &= \frac{gx^3}{(\mu/\rho)^2} \left(\frac{\rho_{\infty}}{\rho_0} - 1 \right) \end{split}$	[T] Low MT rates. Dilute systems, $\Delta \rho / \rho \ll 1$. $N_{Gr}N_{Sc} < 10^8$. Use with arithmetic concentration difference. $x =$ length from plate bottom.	[141] p. 120
D. Laminar, stationary disk	$N_{Sh} = \frac{k'd_{\rm disk}}{D} = \frac{8}{\pi}$	[T] Stagnant fluid. Use arithmetic concentration difference.	[138] p. 240
Laminar, spinning disk	$N_{Sh} = rac{k' d_{ m disk}}{D} = 0.879 N_{hc}^{1/2} N_{Sc}^{1/3}$ $N_{Re} < \sim 10^4$	[T] Asymptotic solution for large N_{sc} . $u = \omega d_{disk/2}$, $\omega =$ rotational speed, rad/s. Rotating disks are often used in electrochemical research.	[101] p. 60 [138] p. 240
E. Laminar, inclined, plate	$\begin{split} N_{Sh,avg} &= 0.783 N_{Re,film}^{1.0} N_{Sc}^{1.3} \left(\frac{x^3 \rho^2 g \sin \alpha}{\mu^2}\right)^{2.9} \\ N_{Re,film} &= \frac{4Q\rho}{\mu^2} < 2000 \\ N_{Sh,avg} &= \frac{k'_m x}{D} \\ \delta_{film} &= \left(\frac{3\mu Q}{w \rho g \sin \alpha}\right)^{1/3} = \text{film thickness} \end{split}$	[T] Constant-property liquid film with low mass- transfer rates. Use arithmetic concentration difference. Newtonian fluid. Solute does not pene- trate past region of linear velocity profile. Differ- ences between theory and experiment. w = width of plate, δ_f = film thickness, α = angle of inclination, x = distance from start soluble surface.	[141] p. 130 [138] p. 209
F. Turbulent, local flat plate, forced flow	$N_{Sh,x} = \frac{k'x}{D} = 0.0292 N_{Be,x}^{0.5}$	[S] Low mass-flux with constant property system. Use with arithmetic concentration difference. $N_{Sc} = 1.0, N_{Re,x} > 10^5$	[77] p. 191 [138] p. 201 [141] p. 221
Turbulent, average, flat plate, forced flow	$N_{Sh,avg} = \frac{k'L}{D} = 0.0365 N_{Re,L}^{0.8}$	Based on Prandtl's 1/7-power velocity law, $\frac{u}{u_{\infty}} = \left(\frac{y}{\delta}\right)^{1/7}$	*
G. Laminar and turbulent, flat plate, forced flow	$\begin{split} j_D = j_H &= \frac{f}{2} = 0.037 N_{Re,L}^{=0.2} \\ j_D &= (k_C/G_M) N_{Sc}^{2/3} \\ j_H &= (h'/C_P G) N_{Pr}^{2/3} \end{split}$	[E] Chilton-Colburn analogies, $N_{sc} = 1.0$, (gases), f = drag coefficient. Corresponds to item 5-17-F and refers to same conditions. $8000 < N_{Re} < 300,000$. Can apply analogy, $j_D = f/2$, to entire plate (including laminar portion) if average values are used.	[77] p. 193 [88] p. 112 [138] p. 201 [141] p. 271 [80] [53]

5-64 HEAT AND MASS TRANSFER

Situation	Correlation	Comments E = Empirical, S = Semiempirical, T = Theoretical	References*
H. Laminar and turbulent, flat plate, forced flow	$ \begin{split} & N_{Sh,arg} = 0.037 N_{Sc}^{1/3} (N_{Re,L}^{0.8} - 15,500) \\ & \text{to} \; N_{Re,L} = 320,000 \\ & N_{Sh,arg} = 0.037 N_{Sc}^{1/3} \\ & \times \left(N_{Re,L}^{0.8} - N_{Re,Cr}^{0.8} + \frac{0.664}{0.037} \; N_{Re,Cr}^{1/2} \right) \\ & \text{in range } 3 \times 10^5 \; \text{to} \; 3 \times 10^6. \end{split} $	[E] Use arithmetic concentration difference. $N_{Sh,acg} = \frac{k'_m L}{D}, N_{Sc} > 0.5$ Entrance effects are ignored. $N_{Re,Cr}$ is transition laminar to turbulent.	[88] p. 112 [138] p. 201
I. Turbulent, local flat plate, natural convection, vertical plate Turbulent, average, flat plate, natural convection, vertical plate	$\begin{split} & N_{Sh,x} = \frac{k'x}{D} = 0.0299 N_{Gr}^{2/5} N_{Sc}^{7/15} \\ & \times (1 + 0.494 N_{Sc}^{2/3})^{-2/5} \\ & N_{Sh,arg} = 0.0249 N_{Gr}^{2/5} N_{Sc}^{7/15} \times (1 + 0.494 N_{Sc}^{2/3})^{-2/5} \\ & N_{Gr} = \frac{g x^3}{(\mu/\rho)^2} \left(\frac{\rho_{\infty}}{\rho_0} - 1\right), N_{Sh,arg} = \frac{k'_m L}{D} \end{split}$	[S] Low solute concentration and low transfer rates. Use arithmetic concentration difference. $N_{Gr} > 10^{10}$ Assumes laminar boundary layer is small fraction of total.	[141] p. 225
J. Perforated flat disk Perforated vertical plate. Natural convection.	$\begin{split} N_{Sh} &= 0.059 N_{Sc}^{0.35} N_{Gr}^{0.35} \left(\frac{d_h}{d}\right)^{0.04} \\ & \text{Characteristic length} = \text{disk diameter } d \\ & N_{Sh} &= 0.1 N_{Sc}^{1/3} N_{Gr}^{1/3} \\ & \text{Characteristic length} = L, \text{electrode height} \end{split}$	$\begin{split} & [\mathrm{E}]6\times 10^9 < N_{sc}N_{Gr} < 10^{12} \text{ and } 1943 < N_{Sc} < 2168 \\ & d_h = \mathrm{hole\ diameter} \\ & [\mathrm{E}]1\times 10^{10} < N_{Sc}N_{Gr} < 5\times 10^{13} \text{ and } 1939 < N_{Sc} < 2186 \\ & \mathrm{Average\ deviation\ \pm\ }10\% \end{split}$	[162]
K. Turbulent, vertical plate	$\begin{split} N_{Sh,avg} &= \frac{k'_m x}{D} = 0.327 N_{Be, \rm film}^{2/9} N_{Sc}^{1/3} \left(\frac{x^3 \rho^2 g}{\mu^2}\right)^{2/9} \\ \delta_{\rm film} &= 0.172 \left(\frac{Q^2}{w^2 g}\right)^{1/3} \end{split}$	[E] See 5-17-E for terms. $N_{Re, film} = \frac{4Q\rho}{w\mu^2} > 2360$ Solute remains in laminar sublayer.	[141] p. 229
L. Cross-corrugated plate (turbulence promoter for membrane systems)	$N_{Sh} = c N_{Re}^a N_{Sc}^{1/3}$	[E] Entrance turbulent channel For parallel flow and corrugations: $N_{Sc} = 1483, a = 0.56, c = 0.268$ $N_{Sc} = 4997, a = 0.50, c = 0.395$ Corrugations perpendicular to flow: $N_{Sc} = 1483, a = 0.57, c = 0.368$ $N_{Sc} = 4997, a = 0.52, c = 0.487$	[134]
M. Turbulent, spinning disk	$\begin{split} N_{Sh} = & \frac{k' d_{\text{disk}}}{D} = 5.6 N_{he}^{1.1} N_{Se}^{1/3} \\ & 6 \times 10^5 < N_{he} < 2 \times 10^6 \\ & 120 < N_{Se} < 1200 \end{split}$	[E] Use arithmetic concentration difference. $u = \omega d_{disk}/2$ where ω = rotational speed, radians/s. $N_{Re} = \rho \omega d^2/2\mu$.	[55] [138] p. 241
N. Mass transfer to a flat plate membrane in a stirred vessel	$\begin{split} N_{Sh} &= \frac{k'd_{tank}}{D} = a N_{Re}^b N_{Sc}^c \\ a \text{ depends on system. } a = 0.0443 \ [40]; b \text{ is often } 0.65-0.70 \ [89]. \text{ If} \\ N_{Re} &= \frac{\omega d_{tank}^2 \rho}{\mu} \end{split}$	[E] Use arithmetic concentration difference. $\omega =$ stirrer speed, radians/s. Useful for laboratory dialysis, R.O., U.F., and microfiltration systems. b = 0.785 [40]. c is often 0.33 but other values have been reported [89].	[40] [89] p. 965
O. Spiral type RO (seawater desalination)	$\begin{split} N_{Sh} &= 0.210 \; N_{Re}^{2/3} N_{Sc}^{1/4} \\ \text{Or with slightly larger error,} \\ N_{Sh} &= 0.080 \; N_{Re}^{0.575} \; N_{Sc}^{1/4} \end{split}$	[E] Polyamide membrane. p = 6.5 MPa and TDS rejection = 99.8%. Recovery ratio 40%.	[148]

TABLE 5-17	Mass-Transfer Correlations fo	r a Single Flat Plate or Disk—	-Transfer to or from Plate to Fluid (Concluded)

°See the beginning of the "Mass Transfer" subsection for references.

TABLE 5-18	Mass-Transfer Correlations for Falling Films with a Free Surface in Wetted Wall Columns—	
Transfer bet	ween Gas and Liquid	

Situation	Correlation	Comments E = Empirical, S = Semiempirical, T = Theoretical	References*
A. Laminar, vertical wetted wall column	$\begin{split} N_{Sh,reg} &= \frac{k'_m x}{D} \approx 3.41 \frac{x}{\delta_{\rm film}} \\ (\text{first term of infinite series}) \\ \delta_{\rm film} &= \left(\frac{3\mu Q}{w\rho g}\right)^{1/3} = \text{film thickness} \\ N_{Re, \rm film} &= \frac{4Q\rho}{w\mu} < 20 \end{split}$	[T] Low rates M.T. Use with log mean concentration difference. Parabolic velocity distribution in films. w = film width (circumference in column) Derived for flat plates, used for tubes if $r_{\text{tube}} \left(\frac{\text{pg}}{2\sigma}\right)^{1/2} > 3.0. \sigma = \text{surface tension}$ If $N_{\text{Re,film}} > 20$, surface waves and rates increase. An approximate solution D_{apparent} can be used. Ripples are suppressed with a wetting agent good to $N_{\text{Re}} = 1200$.	[138] p. 78 [141] p. 137 [152] p. 50
B. Turbulent, vertical wetted wall column Better fit	$N_{Sh,reg} = \frac{k'_m d_t}{D} = 0.023 N_{Re}^{0.83} N_{Sc}^{0.44}$ A coefficient 0.0163 has also been reported using $N_{Re'}$, where $v = v$ of gas relative to liq- uid film. $N_{ev} = 0.0318 N_{e}^{0.790} N_{e}^{0.5}$	 [E] Use with log mean concentration difference for correlations in B and D. N_{Re} is for gas. N_{Se} for vapor in gas. 2000 < N_{Re} ≤ 35,000, 0.6 ≤ N_{Se} ≤ 2.5. Use for gases, d_t = tube diameter. [S] Beevaluated data 	[68] [77] p.181 [138] p. 211 [141] p. 265 [149] p. 212 [152] p. 71 [58]
C. Turbulent, very short column	$N_{sh,avg} = 0.00283N_{Pe} - N_{sc}^{0.05} - N_{sc}^{0.08}$ $N_{ch} = 0.00283N_{Pe} - N_{sc}^{0.08} - N_{sc}^{0.08}$	[E] Evanoration data	[56]
	$N_{sh} = k_g (d_{tube} - 2\delta)/D$ $N_{Reg} = \rho_g u_g (d_{tube} - 2\delta)/\mu_g$ $N_{Re,liq} = \rho_{liq} Q_{liq} (\pi \mu (d_{tube} - 2\delta))$	$N_{Sh,g} = 11 \text{ to } 65, N_{Re,g} = 2400 \text{ to } 9100$ $N_{Re,liq} = 110 \text{ to } 480, N_{Sc,g} = 0.62 \text{ to } 1.93$ $\delta = \text{film thickness}$	[]
D. Turbulent, vertical wetted wall column with ripples	$N_{Sh,aeg} = \frac{k'_m d_t}{D} = 0.00814 N_{Re}^{0.53} N_{Sc}^{0.44} \left(\frac{4Q\rho}{w\mu}\right)^{0.15}$ $30 \le \left(\frac{4Q\rho}{w\mu}\right) < 1200$ $N_{Sh,aeg} = \frac{k'_m d_t}{D} = 0.023 N_{Re}^{0.8} N_{Sc}^{1/3}$	[E] For gas systems with rippling. Fits 5-18- <i>B</i> for $\left(\frac{4Q\rho}{w\mu}\right) = 1000$ [E] "Rounded" approximation to include ripples. Includes solid-liquid mass-transfer data to find 1/3 coefficient on N_{sc} . May use $N_{Re}^{0.83}$. Use for liquids. See also Table 5-19.	[85] [138] p. 213
E. Turbulent, with ripples	$N_{Sh} = \left(\frac{2}{\pi}\right)^{0.5} N_{Rc,\hat{c}}^{0.5} N_{Sc}^{0.5}$ $N_{Rcc\hat{c}} = \dot{c} L^2 / \nu$	[E] $\dot{\varepsilon}$ = dilation rate of surface = $\frac{\partial v_x^c}{\partial x} + \frac{\partial v_y^s}{\partial y}$	[150]
F. Rectification in vertical wetted wall column with turbulent vapor flow, Johnstone and Pigford correlation	$\begin{split} N_{Sh,avg} &= \frac{k'_G d_{col} p_{BM}}{D_e p} = 0.0328 (N'_{Re})^{0.77} N_{Sc}^{0.33} \\ 3000 &< N'_{Re} < 40,000, 0.5 < N_{Sc} < 3 \\ N'_{Re} &= \frac{d_{col} v_{rel} \rho_e}{\mu_e}, v_{rel} = \text{gas velocity relative to} \\ \text{liquid film} &= \frac{3}{2} u_{avg} \text{in film} \end{split}$	[E] Use logarithmic mean driving force at two ends of column. Based on four systems with gas-side resistance only. p_{BM} = logarithmic mean partial pres- sure of nondiffusing species <i>B</i> in binary mixture. p = total pressure Modified form is used for structured packings (See Table 5-24-H).	[84] [138] p. 214 [156]

*See the beginning of the "Mass Transfer" subsection for references.

5-66 HEAT AND MASS TRANSFER

Situation	Correlation	$\begin{array}{c} Comments\\ E=Empirical, S=Semiempirical, T=Theoretical \end{array}$	References*
A. Tubes, laminar, fully developed parabolic velocity profile, developing concentration profile, constant wall concentration	$N_{St_{t}} = \frac{k'd_{t}}{D} = 3.66 + \frac{0.0668(d_{t}/x)N_{Re}N_{Sc}}{1 + 0.04[(d_{t}/x)N_{Re}N_{Sc}]^{2/3}}$	[T] Use log mean concentration difference. For $\frac{x/d_t}{N_{Re}N_{Se}} < 0.10, N_{Re} < 2100.$ $x = \text{distance from tube entrance. Good agreement}$ with experiment at values $10^4 > \frac{\pi}{t} \frac{d_t}{N_{Re}}N_{Se} > 10$	[77] p. 176 [87] p. 525 [141] p. 159
Fully developed concentration profile	$N_{Sh} = \frac{h'd_t}{D} = 3.66$	$[T] \frac{x/d_t}{N_{Re}N_{Sc}} > 0.1$	[141] p. 165
B. Tubes, approximate solution	$N_{Sh,x} = \frac{k'd_t}{D} = 1.077 \left(\frac{d_t}{x}\right)^{1/3} (N_{Re}N_{Sc})^{1/3}$ $N_{Sh,avg} = \frac{k'd_t}{D} = 1.615 \left(\frac{d_t}{L}\right)^{1/3} (N_{Re}N_{Sc})^{1/3}$	[T] For arithmetic concentration difference. $\frac{W}{\rho Dx} > 400$ Leveque's approximation: Concentration BL is thin. Assume velocity profile is linear. High mass velocity. Fits liquid data well.	[141] p. 166
C. Tubes, laminar, uniform plug velocity, developing concen- tration profile, constant wall concentration	$\begin{split} N_{\text{Sh,areg}} = \frac{1}{2} \frac{d_t}{L} N_{\text{Re}} N_{\text{Sc}} \Biggl[\frac{1 - 4 \sum_{j=1}^{\infty} a_j^{-2} \exp\left(\frac{-2a_j^2(\mathbf{x}/r_i)}{N_{\text{Re}}N_{\text{Sc}}}\right)}{1 + 4 \sum_{j=1}^{\infty} a_j^{-2} \exp\left(\frac{-2a_j^2(\mathbf{x}/r_i)}{N_{\text{Re}}N_{\text{Sc}}}\right)} \Biggr] \\ \text{Graetz solution for heat transfer written for M.T.} \end{split}$	[T] Use arithmetic concentration difference. Fits gas data well, for $\frac{W}{D\rho x} < 50$ (fit is fortuitous). $N_{Sh,avg} = (k'_{m}d_{l}/D). a_{1} = 2.405, a_{2} = 5.520, a_{3} = 8.654, a_{4} = 11.792, a_{5} = 14.931$. Graphical solutions are in references.	[103] [141] p. 150
D. Laminar, fully developed parabolic velocity profile, constant mass flux at wall	$\begin{split} N_{Sh,x} = & \left[\frac{11}{48} - \frac{1}{2} \sum_{j=1}^{\infty} \frac{\exp\left[-\lambda_j^2(x/r_i)/(N_{Re}N_{Se})\right]}{C_j\lambda_j^4} \right]^{-1} \\ j & \lambda_j^2 & c_j \\ 1 & 25.68 & 7.630 \times 10^{-3} \\ 2 & 83.86 & 2.058 \times 10^{-3} \\ 3 & 174.2 & 0.901 \times 10^{-3} \\ 4 & 296.5 & 0.487 \times 10^{-3} \\ 5 & 450.9 & 0.297 \times 10^{-3} \end{split}$	[T] Use log mean concentration difference. $N_{Re} < 2100$ $N_{Sh,x} = \frac{k'd_t}{D}$ $N_{Re} = \frac{vd_t\rho}{\mu}$	[139] [141] p. 167
E. Laminar, alternate	$N_{Sh} = 4.36 + \frac{0.023(d_t/L)N_{Re}N_{Sc}}{1 + 0.0012(d_t/L)N_{Re}N_{Sc}}$	[T] $N_{sh} = \frac{k'd_t}{D}$, Use log mean concentration difference. $N_{Re} < 2100$	[77] p. 176
F. Laminar, fully developed concentration and velocity profile	$N_{Sh} = \frac{k'd_i}{D} = \frac{48}{11} = 4.3636$	[T] Use log mean concentration difference. $N_{Re} < 2100$	[141] p. 167
G. Vertical tubes, laminar flow, forced and natural convection	$N_{Sh,arg} = 1.62 N_{Gz}^{1/3} \left[1 \pm 0.0742 \frac{(N_{Gr} N_{Sc} d/L)^{3/4}}{N_{Gz}} \right]^{1/3}$	[T] Approximate solution. Use minus sign if forced and natural convection oppose each other. Good agreement with experiment. $N_{Gz} = \frac{N_{Re}N_{Se}d}{L}, N_{Gr} = \frac{g\Delta\rho d^3}{\rho\nu^2}$	[127]
H. Hollow-fiber extraction inside fibers	$N_{Sh} = 0.5 N_{Gz}, N_{Gz} < 6$ $N_{Sh} = 1.62 N_{Gz}^{0.5}, N_{Gz} \ge 6$	[E] Use arithmetic concentration difference.	[41]
I. Tubes, laminar, RO systems	$N_{Shavg} = \frac{k'_m d_t}{D} = 1.632 \left(\frac{u d_t^2}{DL}\right)^{1/3}$	Use arithmetic concentration difference. Thin concentration polarization layer, not fully developed. $N_{Re} < 2000$, $L =$ length tube.	[40]
J. Tubes and parallel plates, laminar RO	Graphical solutions for concentration polarization. Uniform velocity through walls.	[T]	[137]
K. Rotating annulus for reverse osmosis	For nonvortical flow: $N_{Sh} = 2.15 \left[N_{Ta} \left(\frac{d}{r_i} \right)^{0.5} \right]^{0.18} N_{Sc}^{1/3}$ For vortical flow: $N_{Sh} = 1.05 \left[N_{Ta} \left(\frac{d}{r_i} \right)^{0.5} \right] N_{Sc}^{1/3}$	$\begin{split} & [\text{E,S}] \ N_{T_{i}} = \text{Taylor number} = r_{i} \omega d / \nu \\ & r_{i} = \text{inner cylinder radius} \\ & \varpi = \text{rotational speed, rad/s} \\ & d = \text{gap width between cylinders} \end{split}$	[100]

TABLE 5-19 Mass-Transfer Correlations for Flow in Pipes and Ducts—Transfer Is from Wall to Fluid

Situation	Correlation	Comments E = Empirical, S = Semiempirical, T = Theoretical	References*
L. Parallel plates, laminar, parabolic velocity, developing concen- tration profile, constant wall concentration	Graphical solution	[T] Low transfer rates.	[141] p. 176
L′. 5-19-L, fully developed	$N_{Sh} = \frac{k'(2h)}{D} = 7.6$	$\begin{split} & [\mathrm{T}] \ h = \text{distance between plates. Use log mean} \\ & \text{concentration difference.} \\ & \frac{N_{Re}N_{Se}}{x/(2h)} < 20 \end{split}$	[141] p. 177
M. Parallel plates, laminar, parabolic velocity, developing concen- tration profile, constant mass flux at wall	Graphical solution	[T] Low transfer rates.	[141] p. 176
N. 5-19-M, fully developed	$N_{Sh} = \frac{k'(2h)}{D} = 8.23$	[T] Use log mean concentration difference. $\frac{N_{Re}N_{Se}}{x/(2h)} < 20$	[141] p. 177
O. Laminar flow, vertical parallel plates, forced and natural convection	$N_{Sh,avg} = 1.47 N_{Gz}^{1/3} \left[1 \pm 0.0989 \frac{(N_{Gr} N_{Sc} h/L)^{3/4}}{N_{Gz}} \right]^{1/3}$	[T] Approximate solution. Use minus sign if forced and natural convection oppose each other. Good agreement with experiment. $N_{Gz} = \frac{N_{Be}N_{Se}h}{L}, N_{Gr} = \frac{g\Delta\rho h^3}{\rho v^2}$	[127]
P. Parallel plates, laminar, RO systems	$N_{Sh,avg} = \frac{k'(2H_p)}{D} = 2.354 \left(\frac{uH_p^2}{DL}\right)^{1/3}$	Thin concentration polarization layer. Short tubes, concentration profile not fully developed. Use arithmetic concentration difference.	[40]
Q. Tubes, turbulent	$\begin{split} N_{Sh,acg} &= \frac{k_m' d_t}{D} = 0.023 N_{Re}^{0.83} N_{Sc}^{1/3} \\ 2100 &< N_{Re} < 35,000 \\ 0.6 &< N_{Sc} < 3000 \end{split}$	 [E] Use with log mean concentration difference at two ends of tube. Good fit for liquids. From wetted wall column and dissolution data— see Table 5-18-B. 	[77] p. 181 [103] [152] p. 72
	$\begin{split} N_{\rm Sh,acg} &= \frac{k_m' d_t}{D} = 0.023 N_{Re}^{0.83} N_{Sc}^{0.44} \\ 2000 &< N_{Re} < 35,000 \\ 0.6 &< N_{Sc} < 2.5 \end{split}$	[E] Evaporation of liquids. Use with log mean concentration difference. Better fit for gases.	[68][77] p. 181 [88] p. 112 [138] p. 211
R. Tubes, turbulent	$N_{Sh} = \frac{k'd_t}{D} = 0.0096 N_{Re}^{0.913} N_{Sc}^{0.346}$	[E] 430 < N_{Sc} < 100,000. Dissolution data. Use for high N_{Sc} .	[105] p. 668
S. Tubes, turbulent, smooth tubes, Reynolds analogy	$N_{Sh} = \frac{k'd_t}{D} = \left(\frac{f}{2}\right) N_{Re} N_{Sc}$ f = Fanning friction faction	[T] Use arithmetic concentration difference. N_{Sc} near 1.0 Turbulent core extends to wall. Of limited utility.	[66] p. 474 [77] p. 171 [141] p. 239 [149] p. 250
T. Tubes, turbulent, smooth tubes, Chilton-Colburn analogy	$j_D = j_H \leqslant \frac{f}{2}$ If $\frac{f}{2} = 0.023 N_{Re}^{-0.2}, j_D = \frac{N_{Sh}}{N_{Re} N_{Sc}^{1/3}} = 0.023 N_{Re}^{-0.2}$ $N_{et} = \frac{k' d_t}{2}$ Sec. 5-17-G	[E] Use log-mean concentration difference. Relating j_D to $f/2$ approximate. N_{Pr} and N_{Sc} near 1.0. Low concentration. Results about 20% lower than experiment. $3 \times 10^4 < N_{Rc} < 10^6$	[39] pp. 400 647 [51][53] [141] p. 264 [149] p. 251 [66] p. 475
	$j_D = j_H = f(N_{Re}, \text{ geometry and B.C.})$	[E] Good over wide ranges.	[00] p. 473 [39] p. 647 [51]
U. Tubes, turbulent, smooth tubes, constant surface concentration, Prandtl analogy	$\begin{split} N_{Sh} &= \frac{k' d_t}{D} = \frac{(f/2) N_{Re} N_{Sc}}{1 + 5 \sqrt{f/2} (N_{Sc} - 1)} \\ \frac{f}{2} &= 0.04 N_{Re}^{-0.25} \end{split}$	[T] Use arithmetic concentration difference. Improvement over Reynolds analogy. Best for N_{sc} near 1.0.	[77] p. 173 [141] p. 241

TABLE 5-19 Mass-Transfer Correlations for Flow in Pipes and Ducts—Transfer Is from Wall to Fluid (Continued)

5-68 HEAT AND MASS TRANSFER

Situation	Correlation	Comments E = Empirical, S = Semiempirical, T = Theoretical	References*
V. Tubes, turbulent, smooth tubes, Constant surface concentration, Von Karman analogy	$N_{Sh} = \frac{(f/2)N_{Re}N_{Sc}}{1 + 5\sqrt{f/2} \left\{ (N_{Sc} - 1) + \ln\left[1 + \frac{5}{6}(N_{Sc} - 1)\right] \right\}}$ $\frac{f}{2} = 0.04 N_{Rc}^{-0.25}$	[T] Use arithmetic concentration difference. $N_{Sh} = k'd_t/D$. Improvement over Prandtl, $N_{Sc} < 25$.	[77] p. 173 [141] p. 243 [149] p. 250 [154]
W. Tubes, turbulent, smooth tubes, constant surface concentration	$\begin{split} & \text{For } 0.5 < N_{Sc} < 10; \\ & N_{Sh,aeg} = 0.0097 N_{Re}^{910} N_{Sc}^{12} \\ & \times (1.10 + 0.44 N_{Sc}^{-1/3} - 0.70 N_{Sc}^{-1/6}) \\ & \text{For } 10 < N_{Sc} < 1000; N_{Shaeg} \\ & = \frac{0.0097 N_{Re}^{970} N_{Sc}^{1/2} (1.10 + 0.44 N_{Sc}^{-1/3} - 0.70 N_{Sc}^{-1/6})}{1 + 0.064 N_{Sc}^{1/2} (1.10 + 0.44 N_{Sc}^{-1/3} - 0.70 N_{Sc}^{-1/6})} \\ & \text{For } N_{Sc} > 1000; N_{Shaeg} = 0.0102 N_{Re}^{9/10} N_{Sc}^{1/3} \end{split}$	[S] Use arithmetic concentration difference. Based on partial fluid renewal and an infre- quently replenished thin fluid layer for high N_{sc} . Good fit to available data. $N_{Re} = \frac{u_{\text{bulk}} d_t}{v}$ $N_{Sh,avg} = \frac{k'_{avg} d_t}{D}$	[77] p. 179 [117]
X. Turbulent flow, tubes	$N_{St} = \frac{N_{Sh}}{N_{Pe}} = \frac{N_{Sh}}{N_{Re}N_{Sc}} = 0.0149N_{Re}^{-0.12}N_{Sc}^{-2/3}$	[E] Smooth pipe data. Data fits within 4% except at $N_{Sc} > 20,000$, where experimental data is underpredicted. $N_{Sc} > 100, 10^5 > N_{Rc} > 2100$	[107]
Y. Turbulent flow, noncircular ducts	Use correlations with $d_{eq} = \frac{4 \text{ cross-sectional area}}{\text{wetted perimeter}}$	Can be suspect for systems with sharp corners. Parallel plates: $d_{eq} = 4 \frac{2hw}{2w + 2h}$	[141] p. 289
Z. Decaying swirling flow in pipe	$\begin{split} N_{Sh,acg} &= 0.3508 N_{Sc}^{1/3} N_{Rc}^{0.759} (x/d)^{-0.400} \times (1 + \tan \theta)^{0.271} \\ N_{Rc} &= 1730 \text{ to } 8650, N_{Sc} = 1692 \end{split}$	[E,S] x = axial distance, d = diameter, θ = vane angle (15° to 60°) Regression coefficient = 0.9793. Swirling increases mass transfer.	[161]

TABLE 5-19 Mass-Transfer Correlations for Flow in Pipes and Ducts—Transfer Is from Wall to Fluid (Concluded)

 $^\circ See$ the beginning of the "Mass Transfer" subsection for references.

TABLE 5-20 Mass-Transfer Correlations for Flow Past Submerged Objects

Situation	Correlation	Comments E = Empirical, S = Semiempirical, T = Theoretical	References*
A. Single sphere	$N_{Sh} = \frac{k'_{C}p_{BLM}RTd_{s}}{PD} = \frac{2r}{r - r_{s}}$ $\frac{r/r_{s}}{N_{Sh}} = \frac{2}{4.0} \frac{5}{2.5} \frac{10}{2.5} \frac{50}{2.22} \frac{\infty}{2.04} \frac{\infty}{2.0}$	[T] Use with log mean concentration difference. $r =$ distance from sphere, r_s , $d_s =$ radius and diameter of sphere. No convection.	[141] p. 18
B. Single sphere, creeping flow with forced convection	$N_{Sh} = \frac{k'd}{D} = [4.0 + 1.21(N_{Re}N_{Sc})^{2/3}]^{1/2}$	[T] Use with log mean concentration difference. Average over sphere. Numerical calculations. $\langle N_{Bc}N_{Sc} \rangle < 10,000 N_{Bc} < 1.0.$ Constant sphere diameter. Low mass-transfer rates.	[46][88] p. 114 [105] [138] p. 214
	$N_{Sh} = \frac{k'd}{D} = a(N_{Re}N_{Sc})^{1/3}$	[T] Fit to above ignoring molecular diffusion.	[101] p. 80
	$a = 1.00 \pm 0.01$	$1000 < (N_{Re}N_{Sc}) < 10,000.$	[138] p. 215
C. Single spheres, molecular diffusion, and forced convection, low flow rates	$\begin{split} N_{Sh} &= 2.0 + A N_{Re}^{1/2} N_{Sc}^{1/3} \\ A &= 0.5 \text{ to } 0.62 \end{split}$ $A &= 0.60. \end{split}$	[E] Use with log mean concentration difference. Average over sphere. Frössling Eq. ($A = 0.552$), $2 \le N_{Re} \le 800$, $0.6 \le N_{sc} \le 2.7$. N_{sh} lower than experimental at high N_{Re} . [E] Ranz and Marshall $2 \le N_{Re} \le 200$, $0.6 \le N_{sc} \le 2.5$. Modifications recommended [110]	[39] [77], p. 194 [88] p. 114 [141] p. 276 [39] p. 409, 647 [121] [110]
	A = 0.95.	See also Table 5-23-O. [E] Liquids $2 \le N_{Re} \le 2,000.$ Couch in Ref. 129 p. 217, 218	[138] p. 217 [141] p. 276 [65][66] p. 482
	A = 0.95.	[E] $100 \le N_{Re} \le 700; 1,200 \le N_{Se} \le 1525.$	[136] p. 217 [126][141] p. 276
	A = 0.544.	[E] Use with arithmetic concentration difference. $N_{Sc} = 1; 50 \le N_{Re} \le 350.$	[81][141] p. 276
D. Same as 5-20-C	$N_{Sh} = \frac{k'd_s}{D} = 2.0 + 0.575 N_{Re}^{1/2} N_{Sc}^{0.35}$	[E] Use with log mean concentration difference. $N_{8c} \leq 1, N_{Rc} < 1.$	[70][141] p. 276
E. Same as 5-20-C	$N_{Sh} = \frac{k'd_s}{D} = 2.0 + 0.552 N_{Re}^{0.53} N_{Sc}^{1/3}$	[E] Use with log mean concentration difference. $1.0 < N_{Re} \le 48,000$ Gases: $0.6 \le N_{Sc} \le 2.7$.	[66] p. 482
F. Single spheres, forced concentration, any flow rate	$\begin{split} N_{sh} &= \frac{k'_L d_s}{D} = 2.0 + 0.59 \bigg[\frac{E^{1/3} d_p^{4/3} \rho}{\mu} \bigg]^{0.57} N_{sc}^{1/3} \\ &\text{Energy dissipation rate per unit mass of fluid} \\ &(\text{ranges 570} < N_{sc} < 1420): \\ &E &= \bigg(\frac{C_{Dr}}{2} \bigg) \bigg(\frac{v_r^3}{d_p} \bigg) \frac{\mathrm{m}^2}{\mathrm{s}^3} \end{split}$	[S] Correlates large amount of data and compares to published data. v_r = relative velocity between fluid and sphere, m/s. C_{Dr} = drag coefficient for single particle fixed in fluid at velocity v_r . See 5-23-F for calculation details and applications. $2 < \left(\frac{E^{1/3} d_p^{1/3} \rho}{\mu}\right) < 63,000$	[108]
G. Single spheres, forced convection, high flow rates, ignoring molecular diffusion	$N_{Sh} = \frac{k'd_s}{D} = 0.347 N_{Re}^{0.62} N_{Sc}^{1/3}$ $N_{Sh} = \frac{k'd_s}{D} = 0.33 N_{Re}^{0.6} N_{Sc}^{1/3}$	$ \begin{tabular}{lllllllllllllllllllllllllllllllllll$	[66] p. 482 [147] [138] p. 217 [141] p. 276
	$N_{Sh} = \frac{k'd_s}{D} = 0.43 N_{Re}^{0.56} N_{Sc}^{1/3}$	[E] $200 \le N_{Re} \le 4 \times 10^4$, "air" $\le N_{Sc} \le$ "water."	[141] p. 276
	$N_{Sh} = \frac{k'd_s}{D} = 0.692 N_{Re}^{0.514} N_{Sc}^{1/3}$	[E] $500 \le N_{Re} \le 5000.$	[112] [141] p. 276
H. Single sphere immersed in bed of smaller particles.	$N_{Sh,acg} = \frac{kd_1}{D'} = \varepsilon \left[4 + \frac{4}{5} N_{Pe'}^{2/3} + \frac{4}{\pi} N_{Pe'} \right]$	[T] Compared to experiment. $N_{Pe'} = \frac{u_o d_1}{D'}$,	[71]
For gases.	$\left(1+\frac{1}{9}N_{Pe'}\right)^{1/2}$ Limit $N_{Pe'}{\rightarrow}0, N_{Sh,avg}=2\epsilon$	$D' = D/\tau$, $D =$ molecular diffusivity, $d_1 =$ diameter large particle, $\tau =$ tortuosity. Arithmetic conc. difference fluid flow in inert bed follows Darcy's law.	
I. Single cylinders, perpendi- cular flow	$N_{Sh} = \frac{k'd_s}{D} = AN_{Re}^{1/2} N_{Se}^{1/3}, A = 0.82$	[E] $100 < N_{Re} \le 3500, N_{Sc} = 1560.$	[141] p. 276
	A = 0.74	[E] $120 \le N_{Rc} \le 6000, N_{Sc} = 2.44.$	[141] p. 276
	A = 0.582	[E] $300 \le N_{Re} \le 7600, N_{Sc} = 1200.$	[142]
	$j_D = 0.600(N_{Re})^{-0.457}$	[E] Use with arithmetic concentration difference.	[141] p. 276
	$N_{Sh} = \frac{N_{SGN}}{D}$	$50 \le N_{Re} \le 50,000$; gases, $0.6 \le N_{Se} \le 2.6$; liquids; $1000 \le N_{Se} \le 3000$. Data scatter $\pm 30\%$.	[66] p. 486

5-70 HEAT AND MASS TRANSFER

Situation	Correlation	Comments E = Empirical, S = Semiempirical, T = Theoretical	References*
J. Rotating cylinder in an infinite liquid, no forced flow	$j'_{D} = \frac{k'}{v} N_{sc}^{0.644} = 0.0791 N_{Re}^{-0.30}$ Results presented graphically to $N_{Re} = 241,000$. $N_{Re} = \frac{v d_{cyl} \mu}{\rho}$ where $v = \frac{\omega d_{cyl}}{2}$ = peripheral velocity	[E] Used with arithmetic concentration difference. Useful geometry in electrochemical studies. $112 < N_{Re} \le 100,000. 835 < N_{Sc} < 11490$ $k' = mass-transfer coefficient, cm/s; \omega = rotationalspeed, radian/s.$	[60] [138] p. 238
K. Stationary or rotating cylinder for air	$\begin{split} & \text{Stationary:} \\ & N_{Sh,aeg} = A N_{Re}^{c} S_{c}^{1/3} \\ & 2.0 \times 10^{4} \leq N_{Re} \leq 2.5 \times 10^{5}; d/H = 0.3, \text{Tu} = 0.6\% \\ & A = 0.0539, c = 0.771 \text{ [114]} \\ & A \text{ and } c \text{ depend on geometry [37]} \\ & \text{Rotating in still air:} \\ & N_{Sh,aeg} = 0.169 N_{Re, \omega}^{2/3} \\ & 1.0E4 \leq N_{Re, \omega} \leq 1.0E5; N_{Sc} \approx 2.0; N_{Gr} \approx 2.0 \times 10^{6} \end{split}$	[E] Reasonable agreement with data of other investigators. d = diameter of cylinder, H = height of wind tunnel, Tu of = turbulence level, N_{Re} w = rotational Reynold's number = $u_{ac}d\rho/\mu$, u_{ac} = cylinder surface velocity. Also correlations for two-dimensional slot jet flow [114]. For references to other correlations see [37].	[37]
L. Oblate spheroid, forced convection	$\begin{split} j_D &= \frac{N_{Sh}}{N_{Re} N_{Sc}^{13}} = 0.74 N_{Re}^{-0.5} \\ N_{Re} &= \frac{d_{ch} v p}{\mu}, d_{ch} = \frac{\text{total surface area}}{\text{perimeter normal to flow}} \\ \text{e.g., for cube with side length } a, d_{ch} = 1.27a. \\ N_{Sh} &= \frac{k' d_{ch}}{D} \end{split}$	[E] Used with arithmetic concentration difference. $120 \le N_{Re} \le 6000$; standard deviation 2.1%. Eccentricities between 1:1 (spheres) and 3:1. Oblate spheroid is often approximated by drops.	[141] p. 284 [142]
M. Other objects, including prisms, cubes, hemispheres, spheres, and cylinders; forced convection	$j_D = 0.692 N_{Re,p}^{-0.486}, N_{Re,p} = \frac{v d_{ch} \rho}{\mu}$ Terms same as in 5-20-J.	[E] Used with arithmetic concentration difference. Agrees with cylinder and oblate spheroid results, $\pm 15\%$. Assumes molecular diffusion and natural convection are negligible. $500 \le N_{Re,p} \le 5000$. Turbulent.	[88] p. 115 [141] p. 285 [111] [112]
N. Other objects, molecular diffusion limits	$N_{\rm Sh} = \frac{k' d_{ch}}{D} = A$	[T] Use with arithmetic concentration difference. Hard to reach limits in experiments. Spheres and cubes $A = 2$, tetrahedrons $A = 2\sqrt{6}$ octahedrons $2\sqrt{2}$.	[88] p. 114
O. Shell side of microporous hollow fiber module for solvent extraction	$\begin{split} N_{Sh} &= \beta [d_h (1 - \varphi)/L] N_{Re}^{0.6} \overline{N_{Se}^{0.23}} \\ N_{Sh} &= \frac{\overline{K} d_h}{D} \\ N_{Re} &= \frac{d_h v \rho}{\mu}, \ \overline{K} = \text{overall mass-transfer coefficient} \\ \beta &= 5.8 \ \text{for hydrophobic membrane.} \\ \beta &= 6.1 \ \text{for hydrophilic membrane.} \end{split}$	[E] Use with logarithmic mean concentration difference. $d_{h} = \text{hydraulic diameter} = \frac{4 \times \text{cross-sectional area of flow}}{\text{wetted perimeter}}$ $\boldsymbol{\varphi} = \text{packing fraction of shell side.}$ $L = \text{module length.}$ Based on area of contact according to inside or outside diameter of tubes depending on location of interface between aqueous and organic phases. Can also be applied to gas-liquid systems with liquid on shell side.	[118]

TABLE 5-20 Mass-Transfer Correlations for Flow Past Submerged Objects (Concluded)

See Table 5-23 for flow in packed beds. *See the beginning of the "Mass Transfer" subsection for references.

TABLE 5-21 Mass-Transfer Correlations for Drops, Bubbles, and Bubble Columns

	-		
Conditions	Correlations	$\begin{array}{c} Comments\\ E=Empirical, \ S=Semiempirical, \ T=Theoretical \end{array}$	References*
A. Single liquid drop in immiscible liquid, drop formation, discontinuous (drop) phase coefficient	$\hat{k}_{df} = A \left(\frac{\rho_d}{M_d}\right)_{av} \left(\frac{D_d}{\pi t_f}\right)^{1/2}$ $A = \frac{24}{7} \text{ (penetration theory)}$ $A = 1.31 \text{ (semiempirical value)}$	[T,S] Use arithmetic mole fraction difference. Fits some, but not all, data. Low mass transfer rate. M _d = mean molecular weight of dispersed phase; t _f = formation time of drop. k _{Ld} = mean dispersed liquid phase M.T. coefficient kmolec[s:m ² (mole fraction)]	[141] p. 399
	$A = \left\lfloor \frac{2}{7} (0.8624) \right\rfloor $ (extension by fresh surface elements)		
B. Same as 5-21-A	$ k_{df} = 0.0432 $ $ \times \frac{d_p}{t_f} \left(\frac{\mathbf{p}_d}{M_d}\right)_{av} \left(\frac{u_o}{d_p g}\right)^{0.080} \left(\frac{d_p^2}{t_f D_d}\right)^{-0.334} \left(\frac{\mathbf{\mu}_d}{\sqrt{\mathbf{\rho}_d d_p \mathbf{\sigma} \mathbf{g}_c}}\right)^{-0.601} $	[E] Use arithmetic mole fraction difference. Based on 23 data points for 3 systems. Average absolute deviation 26%. Use with surface area of drop after detachment occurs. $u_o =$ velocity through nozzle; $\sigma =$ interfacial tension.	[141] p. 401 [144] p. 434
C. Single liquid drop in immiscible liquid, drop formation, continuous phase coefficient	$\hat{k}_{cf}=4.6\left(rac{ ho_c}{M_c} ight)_{av}\sqrt{rac{D_c}{\pi t_f}}$	[T] Use arithmetic mole fraction difference. Based on rate of bubble growth away from fixed orifice. Approximately three times too high com- pared to experiments.	[141] p. 402
D. Same as 5-21-C	$\begin{split} k_{L,c} &= 0.386 \\ &\times \left(\frac{p_c}{M_c}\right)_{ac} \left(\frac{D_c}{t_f}\right)^{0.5} \left(\frac{p_c \sigma g_c}{\Delta p g t_f \mu_c}\right)^{0.407} \left(\frac{g t_f^2}{d_p}\right)^{0.148} \end{split}$	[E] Average absolute deviation 11% for 20 data points for 3 systems.	[141] p. 402 [144] p. 434
E. Single liquid drop in immiscible liquid, free rise or fall, discontinuous phase coefficient, stagnant drops	$k_{L,d,m} = \frac{-d_p}{6t} \left(\frac{\mathbf{p}_d}{M_d}\right)_{av} \ln\left\{\frac{6}{\pi^2} \sum_{j=1}^{\infty} \frac{1}{j^2} \exp\left[\left(\frac{-D_d j^2 \pi^2 t}{(d_p/2)^2}\right)\right]\right\}$	[T] Use with log mean mole fraction differences based on ends of column. $t =$ rise time. No con- tinuous phase resistance. Stagnant drops are likely if drop is very viscous, quite small, or is coated with surface active agent. $k_{L,d,m}$ = mean dispersed liquid M.T. coefficient.	[141] p. 404 [144] p. 435
F. Same as 5-21-E	$\hat{k}_{L,d,m} = \frac{-d_p}{6t} \left(\frac{\mathbf{p}_d}{M_d}\right)_{av} \ln\left[1 - \frac{\pi D_d^{1/2} t^{1/2}}{d_p/2}\right]$	[S] See 5-21-E. Approximation for fractional extractions less than 50%.	[141] p. 404 [144] p. 435
G. Same as 5-21-E, continuous phase coefficient, stagnant drops, spherical	$N_{Sh} = rac{k_{L,c,m}d_c}{D_c} = 0.74 igg(rac{ ho_c}{M_c}igg)_{av} N_{Rc}^{1/2} (N_{Sc})^{1/3}$	[E] $N_{Re} = \frac{v_s d_p \rho_c}{\mu_c}$, $v_s = \text{slip velocity between}$ drop and continuous phase.	[141] p. 407 [142][144] p. 436
H. Single bubble or drop with surfactant. Stokes flow.	$\begin{split} N_{Sh} &= 2.0 + \alpha N_{Pe}^{\beta}, N_{Sh} = 2rk/D \\ \alpha &= \frac{5.49}{A + 6.10} + \frac{A}{A + 28.64} \\ \beta &= \frac{0.35A + 17.21}{A + 34.14} \\ 2r &= 2 \text{ to } 50 \mu\text{m}, A = 2.8\text{E4 to } 7.0\text{E5} \\ 0.0026 < N_{Pe,s} < 340, 2.1 < N_{Ma} < 1.3\text{E6} \\ N_{Pe} &= 1.0 \text{ to } 2.5 \times 10^4, \\ N_{Re} &= 2.2 \times 10^{-6} \text{ to } 0.034 \end{split}$	$[T] A = surface retardation parameter$ $A = B\Gamma_o r/\mu D_s = N_{Ma} N_{Pes}$ $N_{Ma} = B\Gamma_o /\mu u = Marangoni no.$ $\Gamma = surfactant surface conc.$ $N_{Pes} = surface Peclet number = ur/D_s$ $D_s = surface diffusivity$ $N_{Pe} = bulk Peclet number$ For $A >> 1$ acts like rigid sphere: $\beta \rightarrow 0.35, \alpha \rightarrow 1/2864 = 0.035$	[120]
I. 5-21-E, oblate spheroid	$\begin{split} N_{Sh} &= \frac{k_{L,c,m} d_3}{D_c} = 0.74 \left(\frac{\rho_c}{M_c}\right)_{ac} (N_{Re,3})^{1/2} (N_{Sc,c})^{1/3} \\ N_{Re,3} &= \frac{v_s d_3 \rho_c}{\mu_c} \end{split}$	[E] Used with log mean mole fraction. Differences based on ends of extraction column; 100 measured values $\pm 2\%$ deviation. Based on area oblate spheroid. $v_s = \text{slip velocity}, d_3 = \frac{\text{total drop surface area}}{\text{perimeter normal to flow}}$	[141] p. 285, 406, 407
J. Single liquid drop in immiscible liquid, Free rise or fall, discontinuous phase coefficient, circulating drops	$ \begin{aligned} k_{dvcire} &= -\frac{d_p}{6\theta} \ln \left[\frac{3}{8} \sum_{j=1}^{\infty} B_j^2 \exp \left(-\frac{\lambda_j 64 D_d \theta}{d_p^2} \right) \right] \\ \hline \\ \frac{\text{Eigenvalues for Circulating Drop}}{k_d d_p / D_d \lambda_1 \lambda_2 \lambda_3 B_1 B_2 B_3} \\ \hline \frac{3.20 0.262 0.424 1.49 0.107}{10.7 0.680 4.92 1.49 0.300} \\ 26.7 1.082 5.90 15.7 1.49 0.495 0.205 \\ 107 1.484 7.88 19.5 1.39 0.603 0.384 \\ 320 1.60 8.62 21.3 1.31 0.583 0.391 \\ \hline \\ & \infty 1.656 9.08 22.2 1.29 0.596 0.386 \end{aligned} $	 [T] Use with arithmetic concentration difference. θ = drop residence time. A more complete listing of eigenvalues is given by Refs. 62 and 76. k'_{Ld,circ} is m/s. 	[62][76][141] p. 405 [152] p. 523

5-72 HEAT AND MASS TRANSFER

Conditions	Correlations	Comments E = Empirical, S = Semiempirical, T = Theoretical	References*
K. Same as 5-21-J	$\hat{k}_{L,d,\text{circ}} = -\frac{d_p}{6\theta} \left(\frac{\rho_d}{M_d}\right)_{ac} \ln\left[1 - \frac{R^{1/2} \pi D_d^{1/2} \theta^{1/2}}{d_p/2}\right]$	[E] Used with mole fractions for extraction less than 50%, $R \approx 2.25$.	[141] p. 405
L. Same as 5-21-J	$\begin{split} N_{Sh} &= \frac{\hat{k}_{L,d,circ} d_p}{D_d} \\ &= 31.4 \bigg(\frac{\rho_d}{M_f} \bigg)_{ac} \bigg(\frac{4D_d t}{d_p^2} \bigg)^{-0.34} N_{Sc,d}^{-0.125} \bigg(\frac{d_p v_s^2 \rho_c}{\sigma g_c} \bigg)^{-0.37} \end{split}$	[E] Used with log mean mole fraction difference. $d_p =$ diameter of sphere with same volume as drop. 856 $\leq N_{Sc} \leq$ 79,800, 2.34 $\leq \sigma \leq$ 4.8 dynes/cm.	[144] p. 435 [145]
M. Liquid drop in immiscible liquid, free rise or fall, continuous phase coefficient, circulating single drops	$\begin{split} N_{Sh,c} &= \frac{k'_{L,c} d_p}{D_d} \\ &= \left[2 + 0.463 N_{Re,drop}^{0.484} N_{Sc,c}^{0.239} \left(\frac{d_p g^{1/3}}{D_c^{2/3}} \right)^{0.072} \right] F \\ F &= 0.281 + 1.615 K + 3.73 K^2 - 1.874 K \\ K &= N_{Re,drop}^{1/8} \left(\frac{\mu_c}{\mu_d} \right)^{1/4} \left(\frac{\mu_c v_s}{\sigma g_c} \right)^{1/6} \end{split}$	[E] Used as an arithmetic concentration difference. $N_{Re,drop} = \frac{d_p v_s \rho_e}{\mu_e}$ Solid sphere form with correction factor <i>F</i> .	[82]
N. Same as 5-21-M, circulating, single drop	$N_{Sh} = \frac{k_{L,c} d_p}{D_c} = 0.6 \left(\frac{\rho_c}{M_c}\right)_{av} N_{he, drop}^{1/2} N_{Sc,c}^{1/2}$	[E] Used as an arithmetic concentration difference. Low σ .	[141] p. 407
O. Same as 5-21-M, circulating swarm of drops	$k_{L,c} = 0.725 \left(\frac{\rho_c}{M_c}\right)_{av} N_{Rc,drop}^{-0.43} N_{Sc,c}^{-0.58} v_s (1 - \phi_d)$	[E] Used as an arithmetic concentration difference. Low σ , disperse-phase holdup of drop swarm. ϕ_d = volume fraction dispersed phase.	[141] p. 407 [144] p. 436
P. Liquid drops in immiscible liquid, free rise or fall, discontinuous phase coefficient, oscillating drops	$N_{Sh} = \frac{k_{L,d,osc}d_p}{D_d}$ $= 0.32 \left(\frac{\rho_d}{M_d}\right)_{ac} \left(\frac{4D_d t}{d_p^2}\right)^{-0.14} N_{Re,drop}^{0.88} \left(\frac{\sigma^3 g_c^3 \rho_c^2}{g \mu_c^4 \Delta \rho}\right)^{0.10}$	[E] Used with a log mean mole fraction difference. Based on ends of extraction column. $N_{Re,drop} = \frac{d_p v_e \rho_e}{\mu_e}, 411 \le N_{Re} \le 3114$ $d_p = \text{diameter of sphere with volume of drop.}$ Average absolute deviation from data, 10.5%. Low interfacial tension (3.5–5.8 dyn), $\mu_e < 1.35$ centipoise.	[141] p. 406 [144] p. 435 [145]
Q. Same as 5-21-P	$k_{L,d,\text{osc}} = \frac{0.00375v_s}{1 + \mu_d/\mu_c}$	[T] Use with log mean concentration difference. Based on end of extraction column. No continuous phase resistance. $k_{Ld.osc}$ in cm/s, $v_s =$ drop velocity relative to continuous phase.	[138] p. 228 [141] p. 405
R. Single liquid drop in immiscible liquid, range rigid to fully circulating	$\begin{split} N_{Sh,c,\text{rigid}} &= \frac{k_c d_p}{D_c} = 2.43 + 0.774 N_{Re}^{0.5} N_{Sc}^{0.33} \\ & + 0.0103 N_{Re} N_{Sc}^{0.33} \\ N_{Sh,c,\text{fully circular}} &= \left[\frac{2}{\pi^{0.5}}\right] N_{Pe,c}^{0.5} \\ \text{Drops in intermediate range:} \\ &= \frac{N_{Sh,c} - N_{Sh,c,\text{rigid}}}{N_{Sh,c,\text{fully circular}} - N_{Sh,c,\text{rigid}}} = 1 - \exp\left[-(4.18 \times 10^{-3}) N_{Pe,c}^{0.42}\right] \end{split}$	[E] Allows for slight effect of wake. Rigid drops: $10^4 < N_{Pec} < 10^6$ Circulating drops: $10 < N_{Re} < 1200$, $190 < N_{Sc} < 241,000$, $10^3 < N_{Pec} < 10^6$	[146] p. 58
S. Coalescing drops in immiscible liquid, discontinuous phase coefficient	$\begin{split} \hat{k}_{d,\text{coal}} &= 0.173 \; \frac{d_p}{t_f} \left(\frac{\mathbf{p}_d}{M_d} \right)_{av} \left(\frac{\mathbf{\mu}_d}{\mathbf{p}_d D_d} \right)^{-1.115} \\ & \times \left(\frac{\Delta \mathbf{p} g d_p^2}{\mathbf{\sigma} g_c} \right)^{1.302} \left(\frac{v_s^2 t_f}{D_d} \right)^{0.166} \end{split}$	[E] Used with log mean mole fraction difference. 23 data points. Average absolute deviation 25%. $t_f =$ formation time.	[141] p. 408
T. Same as 5-21-S, continuous phase coefficient	$\hat{k}_{c,\text{coal}} = 5.959 \times 10^{-4} \left(\frac{\rho}{M}\right)_{ac} \times \left(\frac{D_c}{t_f}\right)^{0.5} \left(\frac{\rho_d u_s^3}{g\mu_c}\right)^{0.332} \left(\frac{d_p^2 \rho_c \rho_d v_s^3}{\mu_d \sigma g_c}\right)^{0.525}$	[E] Used with log mean mole fraction difference. 20 data points. Average absolute deviation 22%.	[141] p. 409

TABLE 5-21 Mass-Transfer Correlations for Drops, Bubbles, and Bubble Columns (Continued)

	-		
Conditions	Correlations	$\begin{array}{c} Comments\\ E=Empirical, \ S=Semiempirical, \ T=Theoretical \end{array}$	References*
U. Single liquid drops in gas, gas side coefficient	$\frac{\hat{k}_{g}M_{g}d_{p}P}{D_{gas}\rho_{g}} = 2 + AN_{Reg}^{1/2}N_{Se,g}^{1/3}$ $A = 0.552 \text{ or } 0.60.$ $N_{Reg} = \frac{d_{p}\rho_{g}v_{s}}{\mu_{g}}$	[E] Used for spray drying (arithmetic partial pressure difference). $v_s = \text{slip velocity between drop and gas stream.}$ Sometimes written with $M_g P / \rho_g = RT$.	[90] p. 388 [121]
V. Single water drop in air, liquid side coefficient	$k_L = 2 \left(\frac{D_L}{\pi t}\right)^{1/2}$, short contact times $k_L = 10 \frac{D_L}{d_p}$, long contact times	[T] Use arithmetic concentration difference. Penetration theory. $t = \text{contact time of drop.}$ Gives plot for $k_G a$ also. Air-water system.	[90] p. 389
W. Single bubbles of gas in liquid, continuous phase coefficient, very small bubbles	$N_{Sh} = \frac{k_c' d_b}{D_c} = 1.0 (N_{Re} N_{Sc})^{1/3}$	[T] Solid-sphere Eq. (see Table 5-20-B). $d_b < 0.1 \text{ cm}, k'_c$ is average over entire surface of bubble.	[105] [138] p. 214
X. Same as 5-21-W, medium to large bubbles	$N_{Sh} = \frac{k'_c d_b}{D_c} = 1.13 (N_{Rc} N_{Sc})^{1/2}$	[T] Use arithmetic concentration difference. Droplet equation: $d_b > 0.5$ cm.	[138] p. 231
Y. Same as 5-21-X	$N_{Sh} = \frac{k_c' d_b}{D_c} = 1.13 (N_{Re} N_{Sc})^{1/2} \left[\frac{d_b}{0.45 + 0.2d_b} \right]$ 500 \le N_{Re} \le 8000	[S] Use arithmetic concentration difference. Modification of above (X) , $d_b > 0.5$ cm. No effect SAA for $d_p > 0.6$ cm.	[83][138] p. 231
Z. Taylor bubbles in single capillaries (square or circular)	$\begin{split} k_L a &= 4.5 \bigg(\frac{D u_G}{L_{uc}} \bigg)^{1/2} \frac{1}{d_c} \\ \text{Applicable} \left(\frac{u_G + u_L}{L_{\text{slug}}} \right)^{0.5} > 3s^{-0.5} \end{split}$	[E] Air-water L_{uc} = unit cell length, L_{slug} = slug length, d_c = capil- lary i.d. For most data $k_L a \pm 20\%$.	[153]
AA. Gas-liquid mass transfer in monoliths	$k_L a \approx 0.1 \left(\frac{P}{V}\right)^{1/4}$ $P/V = \text{power/volume (kW/m^3), range} = 100 \text{ to}$ 10,000	[E] Each channel in monolith is a capillary. Results are in expected order of magnitude for capillaries based on 5-21-Z. k_L is larger than in stirred tanks.	[93]
AB. Rising small bubbles of gas in liquid, continuous phase. Calderbank and Moo-Young correlation	$\begin{split} N_{Sh} &= \frac{k_c' d_b}{D_c} = 2 + 0.31 (N_{Gr})^{1/3} N_{Sc}^{1/3}, d_b < 0.25 \text{ cm} \\ N_{Ra} &= \frac{d_b^3 \rho_G - \rho_L g}{\mu_L D_L} = \text{Raleigh number} \end{split}$	[E] Use with arithmetic concentration difference. Valid for single bubbles or swarms. Independent of agitation as long as bubble size is constant. Recommended by [136]. Note that $N_{Ra} = N_{Gr}N_{Sc}$.	[47][66] p. 451 [88] p. 119 [152] p. 156 [136]
AC. Same as 5-21-AB, large bubbles	$\begin{split} N_{Sb} &= \frac{k_c' d_b}{D_c} = 0.42 \; (N_{Gc})^{1/3} N_{Sc}^{1/2}, d_b > 0.25 \; \mathrm{cm} \\ &\frac{\mathrm{Interfacial area}}{\mathrm{volume}} = a = \frac{6 \; H_g}{d_b} \end{split}$	[E] Use with arithmetic concentration difference. For large bubbles, k'_e is independent of bubble size and independent of agitation or liquid velocity. Resistance is entirely in liquid phase for most gas-liquid mass transfer. $H_g =$ fractional gas holdup, volume gas/total volume.	[47][66] p. 452 [88] p. 119 [97] p. 249 [136]
AD. Bubbles in bubble columns. Hughmark correlation	$\begin{split} N_{Sh} &= \frac{k_L d}{D} = 2 + b N_{Re}^{0.546} N_{Re}^{0.770} \left(\frac{dg^{1/3}}{D^{2/3}} \right)^{0.116} \\ b &= 0.061 \text{ single gas bubbles;} \\ b &= 0.0187 \text{ swarms of bubbles,} \\ V_s &= \frac{V_g}{\varphi_G} - \frac{V_L}{1 - \varphi_G} \end{split}$	[E] d = bubble diameter Air-liquid. Recommended by [136, 152]. For swarms, calculate N_{Re} with slip velocity V_s . φ_G = gas holdup V_G = superficial gas velocity Col. diameter = 0.025 to 1.1 m ρ'_L = 776 to 1696 kg/m ³ μ_L = 0.0009 to 0.152 Pa·s	[55] [82] [152] p. 144
AE. Bubbles in bubble column	$k_L a = 0.00315 u_G^{0.59} \mu_{\rm eff}^{-0.84}$	[E] Recommended by [136].	[57]

TABLE 5-21 Mass-Transfer Correlations for Drops, Bubbles, and Bubble Columns (Continued)

5-74 HEAT AND MASS TRANSFER

Conditions	Correlations	$\begin{array}{c} Comments\\ E=Empirical, \ S=Semiempirical, \ T=Theoretical \end{array}$	References®
AF. Bubbles in bubble column	$k_L = rac{0.15D}{d_{ m Vs}} igg(rac{{f v}}{D} igg)^{1/2} N_{Re}^{3/4}$	[E] d_{Vs} = Sauter mean bubble diameter, $N_{Re} = d_{Vs} u_G \rho_L / \mu_L$. Recommended by [49] based on experiments in industrial system.	[49] [133]
AG. High-pressure bubble column	$\begin{split} k_L a &= 1.77 \sigma^{-0.22} \exp(1.65 u_\ell - 65.3 \mu_\ell) \epsilon_g^{1.2} \\ 790 &< \rho_L < 1580 \text{ kg/m}^3 \\ 0.00036 &< \mu_\ell < 0.0383 \text{ Pa} \cdot \text{s} \\ 0.0232 &< \sigma_\ell < 0.0726 \text{ N/m} \\ 0.028 &< u_g < 0.678 \text{ m/s} \\ 0 &< u_\ell < 0.00089 \text{ m/s} \end{split}$	$ \begin{split} & [\mathrm{E}] \mbox{ Pressure up to 4.24 MPa.} \\ & T \mbox{ up to 92°C.} \\ & \varepsilon_{\rm g} = \mbox{gas holdup. Correlation to estimate } \varepsilon_{\rm g} \mbox{ is given.} \\ & 0.045 < d_{\rm col} < 0.45 \mbox{ m}, d_{\rm col}/H_{\rm col} > 5 \\ & 0.97 < \rho_{\rm g} < 33.4 \mbox{ kg/m}^3 \end{split} $	[96]
AH. Three phase (gas-liquid-solid) bubble column to solid spheres	$\begin{split} N_{sh} &= \frac{k_s d_p}{D} = 2.0 + 0.545 N_{sc}^{U3} \left(\frac{e d_p^4}{v^3}\right)^{0.364} \\ N_{sc} &= 137 \text{ to } 50,000 \text{ (very wide range)} \\ d_p &= \text{particle diameter (solids)} \end{split}$	[E] $e = \text{local energy dissipation rate/unit mass},$ $e = u_g g$ $N_{Se} = \mu_L / (\rho_L D)$ Recommended by [136].	[129] [136]

TABLE 5-21 Mass-Transfer Correlations for Drops, Bubbles, and Bubble Columns (Concluded)

See Table 5-22 for agitated systems. *See the beginning of the "Mass Transfer" subsection for references.

Situation	Correlation	Comments E = Empirical, S = Semiempirical, T = Theoretical	References°
A. Solid particles suspended in agitated vessel containing vertical baffles, continuous phase coefficient	$\begin{split} \frac{k'_{LT} d_p}{D} &= 2 + 0.6 N_{Re,T}^{1/2} N_{Sc}^{1/3} \\ \text{Replace } v_{slip} \text{ with } v_{\text{T}} = \text{terminal velocity. Calculate Stokes' law terminal velocity} \\ v_{Ts} &= \frac{d_{p}^2 \rho_p - \rho_c g}{18 \mu_c} \\ \text{and correct:} \\ \frac{N_{Re,Ts}}{v_T / v_{Ts}} \frac{1}{0.9} \frac{10}{0.65} \frac{100}{0.37} \frac{10,000}{0.17} \frac{100,000}{0.07} \frac{100,000}{0.023} \\ \text{Approximate: } k'_L = 2k'_{LT} \end{split}$	[S] Use log mean concentration difference. Modified Frossling equation: $N_{Re,R} = \frac{v_R d_p \rho_c}{\mu_c}$ (Reynolds number based on Stokes' law.) $N_{Re,T} = \frac{v_T d_p \rho_c}{\mu_c}$ (terminal velocity Reynolds number.) k'_t almost independent of d_p . Harriott suggests different correction procedures. Range k'_L/k'_{LT} is 1.5 to 8.0.	[74][138] p. <u>220–222</u> [110]
B. Solid, neutrally buoyant particles, continuous phase coefficient	$N_{sh} = \frac{k'_{t}d_{p}}{D} = 2 + 0.47 N_{he,p}^{0.62} N_{sc}^{0.36} \left(\frac{d_{imp}}{d_{tank}}\right)^{0.17}$ Graphical comparisons are in Ref. 88, p. 116.	$ \begin{array}{l} [E] \mbox{ Use log mean concentration difference.} \\ \mbox{ Density unimportant if particles are close to} \\ \mbox{ neutrally buoyant. Also used for drops. Geometric effect (d_{imp}/d_{iank}) is usually unimportant. Ref. 102 gives a variety of references on correlations. \\ [E] $E = energy dissipation rate per unit mass fluid $$= \frac{Pg_e}{V_{unk} \rho_e}$, $P = power, $N_{Rep} = \frac{E^{1/3} d_p^{4/3}}{v}$$ \end{tabular} $	[88] p. 115 [102] p. 132 [152] p. 523
C. Same as 22-B, small particles	$N_{\rm Sh} = 2 + 0.52 N_{\rm Re,p}^{0.52} N_{\rm Sc}^{1/3}, N_{\rm Re,p} < 1.0$	[E] Terms same as above.	[88] p. 116
D. Solid particles with significant density difference	$N_{Sh} = \frac{k_L' d_p}{D} = 2 + 0.44 \left(\frac{d_p v_{\rm slip}}{v}\right)^{1/2} N_{Sc}^{0.38}$	[E] Use log mean concentration difference. N_{sh} standard deviation 11.1%. v_{slip} calculated by methods given in reference.	[102] [110]
E. Small solid particles, gas bubbles or liquid drops, $d_p < 2.5$ mm. Aerated mixing vessels	$N_{Sh} = \frac{k_L' d_p}{D} = 2 + 0.31 \left[\frac{d_p^3 \rho_p - \rho_c }{\mu_c D} \right]^{1/3}$	[E] Use log mean concentration difference. g = 9.80665 m/s^2 . Second term RHS is free-fall or rise term. For large bubbles, see Table 5-21-AC.	[46][67] p. 487 [97] p. 249
F. Highly agitated systems; solid particles, drops, and bubbles; continuous phase coefficient	$k_L^{\prime} N_{Sc}^{23} = 0.13 \left[\frac{(P/V_{tank})\mu_c g_c}{\rho_c^2} \right]^{1/4}$	[E] Use arithmetic concentration difference. Use when gravitational forces overcome by agita- tion. Up to 60% deviation. Correlation prediction is low (Ref. 102). (P/V_{tank}) = power dissipated by agitator per unit volume liquid.	[47] [66] p. 489 [110]
G. Liquid drops in baffled tank with flat six-blade turbine	$\begin{split} k_c'a &= 2.621 \times 10^{-3} \ \frac{(ND)^{1/2}}{d_{\rm imp}} \\ &\times \phi^{0.304} \!\! \left(\frac{d_{\rm imp}}{d_{\rm tank}} \right)^{1.582} \! N_{Re}^{1.929} N_{Oh}^{1.025} \end{split}$	[E] Use arithmetic concentration difference. Studied for five systems. $N_{Re} = d_{imp}^2 N \rho_c / \mu_c, N_{Oh} = \mu_c / (\rho_c d_{imp} \sigma)^{1/2}$ ϕ = volume fraction dispersed phase. N = impeller	[144] p. 437
	k'd,	speed (revolutions/time). For $d_{tank} = h_{tank}$, average absolute deviation 23.8%.	
ri. Liquid drops in battled tank, low volume fraction dispersed phase	$N_{Sh} = \frac{1.237 \times 10^{-1} N_{Sc}^{2} N^{-2}}{D} \times N_{Fr}^{5/12} \left(\frac{d_{imp}}{d_p}\right) \left(\frac{d_p}{D_{tank}}\right)^{1/2} \left(\frac{\rho_d d_p^2}{\sigma}\right)^{5/4} \phi^{-1/2}$ Stainless steel flat six-blade turbine. Tank had four baffles. Correlation recommended for $\phi \le 0.06$ [Ref. 146] $a = 6\phi/d_{32}$, where d_{32} is Sauter mean diameter when 33% mass transfer has occurred.	[L] 150 runs, 9 systems, $\phi = 0.01$. K_c is time- averaged. Use arithmetic concentration differ- ence. $N_{Re} = \left(\frac{d_{imp}^2 N_{Sc}}{\mu_c}\right), N_{Fr} = \left(\frac{d_{imp} N^2}{g}\right)$ d_p = particle or drop diameter; σ = interfacial ten- sion, N/m; ϕ = volume fraction dispersed phase; a = interfacial volume, 1/m; and $k_c \alpha D_c^{2/3}$ implies rigid drops. Negligible drop coalescence. Average absolute deviation—19.71%. Graphical comparison given by Ref. 143.	p. 78

TABLE 5-22 Mass-Transfer Correlations for Particles, Drops, and Bubbles in Agitated Systems

5-76 HEAT AND MASS TRANSFER

Situation	Correlation	Comments E = Empirical, S = Semiempirical, T = Theoretical	References
I. Gas bubble swarms in sparged tank reactors	$\begin{split} k'_L a \bigg(\frac{\mathbf{v}}{g^2} \bigg)^{1/3} &= C \bigg[\frac{P/V_L}{\rho(\mathbf{v}g^4)^{1/3}} \bigg]^a \bigg[\frac{q_G}{V_L} \bigg(\frac{\mathbf{v}}{g^2} \bigg)^{1/3} \bigg]^b \\ \text{Rushton turbines: } C &= 7.94 \times 10^{-4}, a = 0.62, \\ b &= 0.23. \\ \text{Intermig impellers: } C &= 5.89 \times 10^{-4}, a = 0.62, \\ b &= 0.19. \end{split}$	[E] Use arithmetic concentration difference. Done for biological system, O_2 transfer. $h_{tank}/D_{tank} = 2.1; P = \text{power, } kW. V_L = \text{liquid volume,}$ $m^3, q_G = \text{gassing rate, } m^3/s. k'_L a = s^{-1}.$ Since $a = m^2/m^3$, $v = \text{kinematic viscosity,} m^2/s.$ Low viscosity system. Better fit claimed with q_G/V_L than with u_G (see 5-22-J to N).	[131]
J. Same as 5-22-1	$k'_L a = 2.6 \times 10^{-2} \left(\frac{P}{V_L}\right)^{0.4} u_G^{0.5}$	[E] Use arithmetic concentration difference. Ion free water $V_L < 2.6$, u_G = superficial gas velocity in m/s. 500 < $P/V_L < 10,000$. P/V_L = watts/m ³ , V_L = liquid volume, m ³ .	[98] [123]
K. Same as 5-22-J	$k'_L a = 2.0 \times 10^{-3} \left(\frac{P}{V_L}\right)^{0.7} u_G^{0.2}$	[E] Use arithmetic concentration difference. Water with ions. $0.002 < V_L < 4.4, 500 < P/V_L < 10,000$. Same definitions as 5-22-1.	[98] [101]
L. Same as 5-22-I, baffled tank with standard blade Rushton impeller	$k'_L a = 93.37 \left(\frac{P}{V_L}\right)^{0.76} u_C^{0.45}$		[67] [98]
M. Same as 5-22-L	$\begin{aligned} k'_L a \; \frac{d^2_{\text{imp}}}{D} &= 7.57 \bigg[\frac{\mu_{\text{eff}}}{\rho D} \bigg]^{0.5} \bigg[\frac{\mu_G}{\mu_{\text{eff}}} \bigg]^{0.694} \\ &\times \bigg[\frac{d^2_{\text{imp}} N \rho_L}{\mu_{\text{eff}}} \bigg]^{1.11} \bigg(\frac{u_C d}{\sigma} \bigg)^{0.447} \\ d_{\text{imp}} &= \text{impeller diameter, m; } D = \text{diffusivity, m}^2/\text{s} \end{aligned}$	$ \begin{array}{l} [E] Use arithmetic concentration difference.\\ CO_2 into aqueous carboxyl polymethylene.\\ Same definitions as 5-22-L. \mu_{eff} = effective viscos-ity from power law model, Pa-s. \sigma = surface tension liquid, N/m. \end{array} $	[98] [115]
N. Same as 5-22-L, bubbles	$\frac{k_L' a d_{imp}^2}{D} = 0.060 \left(\frac{d_{imp}^2 N \rho}{\mu_{eff}}\right) \left(\frac{d_{imp}^2 N^2}{g}\right)^{0.19} \left(\frac{\mu_{eff} u_G}{\sigma}\right)^{0.6}$	[E] Use arithmetic concentration difference. O ₂ into aqueous glycerol solutions. O ₂ into aque- ous millet jelly solutions. Same definitions as 5-22-L.	[98] [160]
O. Gas bubble swarm in sparged stirred tank reactor with solids present	$\begin{aligned} \frac{k'_{L}a}{(k'_{L}a)_{o}} &= 1 - 3.54(\varepsilon_{s} - 0.03) \\ 300 &\leq P/V_{rs} < 10,000 \text{ W/m}^{3}, 0.03 \leq \varepsilon_{s} \leq 0.12 \\ 0.34 &\leq u_{G} \leq 4.2 \text{ cm/s}, 5 < \mu_{L} < 75 \text{ Pa·s} \end{aligned}$	[E] Use arithmetic concentration difference. Solids are glass beads, $d_p = 320 \ \mu m$. $\varepsilon_s = solids$ holdup m ³ /m ³ liquid, $(k'_L a)_o = mass$ transfer in absence of solids. Ionic salt solution— noncoalescing.	[38] [132]
P. Surface aerators for air-water contact	$\begin{aligned} \frac{k_L a}{N} &= b N_p^{0.71} N_{Fr}^{0.48} N_{Re}^{0.82} \left(\frac{H}{d}\right)^{-0.54} \left(\frac{V}{d^3}\right)^{-1.08} \\ b &= 7 \times 10^{-6}, N_p = P/(\rho N^3 d^5) \\ N_{Re} &= N d^2 \rho_{luq} / \mu_{liq} \\ N_{Fr} &= N^2 d/g, P/V = 90 \text{ to } 400 \text{ W/m}^3 \end{aligned}$	[E] Three impellers: Pitched blade downflow turbine, pitched blade upflow turbine, standard disk turbine. Baffled cylindrical tanks 1.0- and 1.5-m ID and 8.2 × 8.2-m square tank. Submer- gence optimized all cases. Good agreement with data. $N =$ impeller speed, s^{-1} ; $d =$ impeller diameter, m; $H =$ liquid height, m; $V =$ liquid volume, m ³ ; $k_L a =$ s^{-1} , $g =$ acceleration gravity = 9.81 m/s ²	[113]
Q. Gas-inducing impeller for air-water contact	$\begin{split} k_L a V (v/g^2)^{1/3} d^3 &= A N_{Fr}^{B} \left(\frac{V_A}{V} \right)^C \\ \text{Single impeller:} \\ A &= 0.00497, B = 0.56, C = 0.32 \\ \text{Multiple impeller:} \\ A &= 0.00746, B = 0.54, C = 0.38 \end{split}$	[E] Same tanks and same definitions as in 5-22-P. $V_A = \text{active volume} = p/(\pi \rho g N d).$	[113]
R. Gas-inducing impeller with dense solids	$\begin{split} Sh_{CL} &= \frac{k_L a d_{st}^2}{D} = (1.26 \times 10^{-5}) \; N_{Re}^{1.8} N_{Se}^{0.9} N_{We}^{-0.1} \\ N_{Re} &= \rho N d_{Sr}^2 / \mu, \; N_{Se} = \mu / (\rho D), \\ N_{We} &= \rho N^2 d_{Sr}^2 / \sigma \end{split}$	[E] Hydrogenation with Raney-type nickel catalyst in stirred autoclave. Used varying T , p , solvents. d_{st} = stirrer diameter.	[78]

TABLE 5-22	Mass-Transfer	Correlations	for Particles,	Drops, a	and Bubbles in	Agitated	Systems (Concluded)
------------	---------------	--------------	----------------	----------	----------------	----------	-----------	------------

See also Table 5-21. *See the beginning of the "Mass Transfer" subsection for references.

TABLE 5-23 Mass-Transfer Correlations for Fixed and Fluidized Beds

Transfer is to or from particles

Situation	Correlation	$\begin{array}{c} Comments\\ E=Empirical, S=Semiempirical, T=Theoretical \end{array}$	References*
A. For gases, fixed and fluidized beds, Gupta and Thodos correlation	$\begin{split} j_{H} = & j_{D} = \frac{2.06}{\epsilon N_{Re}^{0.275}}, 90 \leq N_{Re} \leq A \\ \text{Equivalent:} \\ & N_{Sh} = \frac{2.06}{\epsilon} N_{Re}^{0.425} N_{Sc}^{1/3} \\ \text{For other shapes:} \\ & \frac{\epsilon j_{D}}{(\epsilon j_{D})_{\text{sphere}}} = 0.79 \; (\text{cylinder}) \; \text{or} \; 0.71 \; (\text{cube}) \end{split}$	$\begin{split} & [\mathrm{E}] \mbox{ For spheres. } N_{Re} = \frac{v_{\mathrm{supe}} d_p \rho}{\mu} \\ & A = 2453 \ [\mathrm{Ref. 141}], A = 4000 \ [\mathrm{Ref. 77}]. \\ & For N_{Re} > 1900, j_H = 1.05 j_D. \\ & Heat transfer result is in absence of radiation. \\ & N_{Sh} = \frac{k' d_s}{D} \\ & Graphical results are available for N_{Re} from 1900 \\ & to 10,300. \\ & a = \frac{\mathrm{surface \ area}}{\mathrm{volume}} = 6(1 - \varepsilon)/d_p \\ & For spheres, d_p = \mathrm{diameter.} \\ & For nonspherical: d_p = 0.567 \ \sqrt{\mathrm{Part. \ Surf. \ Area}} \end{split}$	[72] [73] [77] p. 195 [141]
B. For gases, for fixed beds, Petrovic and Thodos correlation	$\begin{split} N_{Sh} &= \frac{0.357}{\epsilon} \; N_{Re}^{0.641} N_{Se}^{1/3} \\ & 3 < N_{Re} < 900 \; \text{can be extrapolated to} \; N_{Re} < 2000. \end{split}$	[E] Packed spheres, deep beds. Corrected for axial dispersion with axial Peclet number = 2.0. Prediction is low at low N_{Re} . N_{Re} defined as in 5-23-A.	[116][128] p. 214 [155]
C. For gases and liquids, fixed and fluidized beds	$j_{D} = \frac{0.4548}{\varepsilon N_{Re}^{0.4069}}, 10 \le N_{Re} \le 2000$ $j_{D} = \frac{N_{Sh}}{N_{Re}N_{Sc}^{1/3}}, N_{Sh} = \frac{k'd_{s}}{D}$	[E] Packed spheres, deep bed. Average deviation $\pm 20\%$, $N_{Re} = d_p v_{super} \rho / \mu$. Can use for fluidized beds. $10 \le N_{Re} \le 4000$.	[60][66] p. 484
D. For gases, fixed beds	$j_D = \frac{0.499}{\epsilon N_{Re}^{0.332}}$	[E] Data on sublimination of naphthalene spheres dispersed in inert beads. $0.1 < N_{Re} < 100$, $N_{Sc} = 2.57$. Correlation coefficient = 0.978.	[80]
E. For liquids, fixed bed, Wilson and Geankoplis correlation	$\begin{split} j_D &= \frac{1.09}{\epsilon N_{Re}^{2/3}}, 0.0016 < N_{Re} < 55 \\ 165 \leq N_{Sc} \leq 70,600, 0.35 < \epsilon < 0.75 \\ \text{Equivalent:} \\ N_{Sh} &= \frac{1.09}{\epsilon} N_{Re}^{1/3} N_{Sc}^{1/3} \\ j_D &= \frac{0.25}{\epsilon N_{Re}^{0.31}}, 55 < N_{Re} < 1500, 165 \leq N_{Sc} \leq 10,690 \\ \text{Equivalent:} N_{Sh} &= \frac{0.25}{\epsilon} N_{Re}^{0.69} N_{Sc}^{1/3} \end{split}$	[E] Beds of spheres, $N_{Re} = \frac{d_p V_{super} \rho}{\mu}$ Deep beds. $N_{Sh} = \frac{k' d_s}{D}$	[66] p. 484 [77] p. 195 [141] p. 287 [158]
F. For liquids, fixed beds, Ohashi et al. correlation	$\begin{split} N_{Sh} &= \frac{k'd_s}{D} = 2 + 0.51 \bigg(\frac{E^{1/3}d_p^{4/3}\rho}{\mu} \bigg)^{0.60} N_{Sc}^{1/3} \\ E &= \text{Energy dissipation rate per unit mass of fluid} \\ &= 50(1-\epsilon)\epsilon^2 C_{D_0} \bigg(\frac{v_r^3}{d_p} \bigg), \mathrm{m}^2/\mathrm{s}^3 \\ &= \bigg[\frac{50(1-\epsilon)C_D}{\epsilon} \bigg] \bigg(\frac{v_{\mathrm{super}}^3}{d_p} \bigg) \\ \text{General form:} \\ N_{Sh} &= 2 + K \bigg(\frac{E^{1/3}D_p^{4/3}\rho}{\mu} \bigg)^{\alpha} N_{Sc}^{\beta} \\ &= \mathrm{applies to single particles, packed beds, two-phase tube flow, suspended bubble columns, and stirred tanks with different definitions of E. \end{split}$	$\begin{split} & [S] \text{ Correlates large amount of published data.} \\ & \text{Compares number of correlations, } v_r = \text{relative velocity, } m/s. In packed bed, } v_r = v_{\text{super}}/\varepsilon. \\ & C_{Do} = \text{single particle drag coefficient at } v_{\text{super}} \text{ calculated from } C_{Do} = AN_{Re_1}^{m}. \\ & \frac{N_{Re}}{0 \text{ to } 5.8} \frac{A}{24} \frac{m}{1.0} \\ & 5.8 \text{ to } 500 10 0.5 \\ & >500 0.44 0 \\ \\ & \text{Ranges for packed bed:} \\ & 0.001 < N_{Re} < 1000, 505 < N_{Se} < 70,600, \\ & 0.2 < \frac{E^{1/3}d_{P}^{H3}\rho}{\mu} < 4600 \\ \\ & \text{Compares different situations versus general correlation. See also 5-20-F.} \end{split}$	[108]

5-78 HEAT AND MASS TRANSFER

Situation	Correlation	$\begin{array}{c} Comments\\ E=Empirical, S=Semiempirical, T=Theoretical \end{array}$	References*
G. Electrolytic system. Pall rings. Transfer from fluid to rings.	$ \begin{split} & \text{Full liquid upflow:} \\ & N_{sh} = k_L d_e / D = 4.1 N_{Re}^{0.39} N_{Sc}^{1/3} \\ & N_{Re} d_e u / \nu = 80 \text{ to } 550 \\ & \text{Irrigated liquid downflow (no gas flow):} \\ & N_{Sh} = 5.1 N_{Re}^{0.44} N_{Sc}^{1/3} \end{split} $	[E] d_e = diameter of sphere with same surface area as Pall ring. Full liquid upflow agreed with literature values. Schmidt number dependence was assumed from literature values. In downflow, N_{Re} used superficial fluid velocity.	[69]
H. For liquids, fixed and fluidized beds	$\begin{split} \varepsilon_{j_D} &= \frac{1.1068}{N_{Re}^{0.72}}, \ 1.0 < N_{Re} \le 10 \\ \varepsilon_{j_D} &= \frac{N_{Sh}}{N_{Re}N_{Sc}^{1/3}}, \ N_{Sh} = \frac{k'd_*}{D} \end{split}$	[E] Spheres: $N_{Re} = rac{d_{\mu}v_{ ext{super}} \mathbf{p}}{\mu}$	[59][66] p. 484
I. For gases and liquids, fixed and fluidized beds, Dwivedi and Upadhyay correlation	$\begin{split} \varepsilon j_D &= \frac{0.765}{N_{Re}^{0.92}} + \frac{0.365}{N_{Re}^{0.386}} \\ \text{Gases: } 10 &\leq N_{Re} \leq 15,000. \\ \text{Liquids: } 0.01 &\leq N_{Re} \leq 15,000. \\ N_{Re} &= \frac{d_p v_{\text{super}} \rho}{\mu}, N_{Sh} = \frac{k' d_s}{D} \end{split}$	[E] Deep beds of spheres, $j_{D} = \frac{N_{Sh}}{N_{Re}N_{Sc}^{1/3}}$ Best fit correlation at low conc. [52] Based on 20 gas studies and 17 liquid studies. Recommended instead of 5-23-C or E.	[59] [77] p. 196 [52]
J. For gases and liquids, fixed bed	$j_D = 1.17 N_{Re}^{-0.415}, \ 10 \le N_{Re} \le 2500$ $j_D = \frac{k'}{v_{av}} \frac{p_{BM}}{P} N_{Sc}^{2/3}$	[E] Spheres: Variation in packing that changes ε not allowed for. Extensive data referenced. 0.5 < N_{sc} < 15,000. Comparison with other results are shown. $N_{Re} = \frac{d_p v_{super} \rho}{\mu}$	[138] p. 241
K. For liquids, fixed and fluidized beds, Rahman and Streat correlation	$N_{Sh} = \frac{0.86}{\varepsilon} N_{Re} N_{Sc}^{1/3}, 2 \le N_{Re} \le 25$	[E] Can be extrapolated to $N_{Re} = 2000$. $N_{Re} = d_p v_{super} \rho / \mu$. Done for neutralization of ion exchange resin.	[119]
L. Size exclusion chromatography of proteins	$N_{Sh} = \frac{k_L d}{D} = \frac{1.903}{\epsilon} N_{Re}^{1/3} N_{Se}^{1/3}$	[E] Slow mass transfer with large molecules. Aqueous solutions. Modest increase in N_{Sh} with increasing velocity.	[79]
M. Liquid-free convection with fixed bed Raschig rings. Electrochemical.	$\begin{split} N_{Sh} &= kd/D = 0.15 \; (N_{Sc} N_{Gr})^{0.32} \\ N_{Gr} &= \text{Grashof no.} = gd^3 \Delta \rho / (\nu^2 \rho) \\ \text{If forced convection superimposed,} \\ N_{Sh, \text{ overall}} &= (N_{Sh, \text{forced}}^3 + N_{Sh, \text{free}}^3)^{1/3} \end{split}$	$ \label{eq:expectation} \begin{split} [E] \ d = & \text{Raschig ring diameter, } h = \text{bed height} \\ & 1810 < N_{\text{Sc}} < 2532, \ 0.17 < d/h < 1.0 \\ & 10.6 \times 10^6 < N_{\text{Sc}} N_{Gr} < 21 \times 10^7 \end{split} $	[135]
N. Oscillating bed packed with Raschig rings. Dissolution of copper rings.	$ \begin{array}{l} \mbox{Batch (no net solution flow):} \\ N_{sh} = 0.76 N_{sc}^{0.33} N_{Rec}^{0.7} (d_c/h)^{0.35} \\ 503 < N_{Rec} < 2892 \\ 960 < N_{sc} < 1364, 2.3 < d_c/h < 7.6 \end{array} $	$\begin{split} & [E] N_{sh} = k d_c / D, N_{Re,v} = \text{vibrational Re} = \rho \upsilon_c d_c / \mu \\ & \upsilon_v = \text{vibrational velocity (intensity)} \\ & d_c = \text{col. diameter}, h = \text{column height} \\ & \text{Average deviation is \pm 12\%.} \end{split}$	[61]
O. For liquids and gases, Ranz and Marshall correlation	$N_{Sh} = \frac{k'd}{D} = 2.0 + 0.6 N_{Sc}^{1/3} N_{Re}^{1/2}$ $N_{Re} = \frac{d_p v_{\text{super}} \rho}{\mu}$	[E] Based on freely falling, evaporating spheres (see 5-20-C). Has been applied to packed beds, prediction is low compared to experimental data. Limit of 2.0 at low N_{Re} is too high. Not corrected for axial dispersion.	[121][128] p. 214 [155] [110]
P. For liquids and gases, Wakao and Funazkri correlation	$\begin{split} N_{Sh} &= 2.0 + 1.1 N_{Sc}^{1/3} N_{Re}^{0.6}, 3 < N_{Re} < 10,000 \\ N_{Sh} &= \frac{k'_{\rm film} d_p}{D}, N_{Re} = \frac{\rho_f \upsilon_{\rm supe} \rho}{\mu} \\ \frac{\varepsilon D_{\rm axial}}{D} &= 10 + 0.5 N_{Sc} N_{Re} \end{split}$	[E] Correlate 20 gas studies and 16 liquid studies. Corrected for axial dispersion with: Graphical comparison with data shown [128], p. 215, and [155]. D _{axial} is axial dispersion coefficient.	[128] p. 214 [155]
Q. Acid dissolution of limestone in fixed bed	$\begin{split} N_{Sh} &= 1.77 \; N_{Re}^{0.56} N_{Sc}^{U3} (1-\epsilon)^{0.44} \\ 20 &< N_{Re} < 6000 \end{split}$	[E] Best fit was to correlation of Chu et al., Chem. Eng. Prog., 49(3), 141(1953), even though no reaction in original.	[94]
R. Semifluidized or expanded bed. Liquid-solid transfer.	$\begin{split} N_{Sh} &= \frac{k_{\rm film} d_p}{D} = 2 + 1.5 \; (1 - \varepsilon_L) N_{Re}^{1/3} N_{Se}^{1/3} \\ N_{Re} &= \rho_p d_p u / \mu \varepsilon_L; \; N_{Se} = \mu / \rho D \end{split}$	[E] ε_L = liquid-phase void fraction, ρ_p = particle density, ρ = fluid density, d_p = particle diameter. Fits expanded bed chromatography in viscous liquids.	[64] [159]

TABLE 5-23 Mass Transfer Correlations for Fixed and Fluidized Beds (Continued)

TABLE 5-23 Mass Transfer Correlations for Fixed and Fluidized Bed	s (Concluded	:()
---	---------------------	-----

Situation	Correlation	Comments E = Empirical, S = Semiempirical, T = Theoretical	References
S. Mass-transfer structured packing and static mixers. Liquid with or without fluidized particles. Electrochemical	$\begin{split} & \text{Fixed bed:} \\ j' &= 0.927 N_{k'}^{572}, N_{Re}' < 219 \\ j' &= 0.443 N_{k'}^{-0.435}, 219 < N_{Re}' < 1360 \\ & \text{Fluidized bed with particles:} \\ j &= 6.02 N_{Re}^{-0.855}, \text{ or} \\ j' &= 16.40 N_{Re'}^{-0.950} \\ & \text{Natural convection:} \\ & \text{Natural convection:} \\ & \text{N}_{Sh} &= 0.252 (N_{Se} N_{Cr})^{0.299} \\ & \text{Bubble columns:} \\ & \text{Structured packing:} \\ & N_{St} &= 0.105 (N_{Re} N_{Fr} N_{Se}^2)^{-0.268} \\ & \text{Static mixer:} \\ & N_{St} &= 0.157 (N_{Re} N_{Fr} N_{Se}^2)^{-0.298} \end{split}$	[E] Sulzer packings, $j' = \frac{k \cos \beta}{v} N_{se}^{2/3}$, $\beta = \text{corrugation incline angle.}$ $N_{Re'} = v' d'_h \rho / \mu, v' = v_{super} / (\varepsilon \cos \beta),$ $d'_h = \text{channel side width.}$ Particles enhance mass transfer in laminar flow for natural convection. Good fit with correlation of Ray et al., Intl. J. Heat Mass Transfer, 41 , 1693 (1998). $N_{Gr} = g \Delta \rho Z^2 \rho / \mu^2$, $Z = \text{corrugated plate length. Bubble column results fit correlation of Neme et al., Chem. Eng. Technol., 20, 297 (1997) for structured packing. N_{Sr} = \text{Stanton number} = kZ/DN_{Fr} = \text{Froude number} = v_{super}^2/gz$	[48]
T. Liquid fluidized beds	$\begin{split} N_{Sh} &= \frac{2\xi/\varepsilon^m + \left[\frac{(2\xi/\varepsilon^m)(1-\varepsilon)^{1/2}}{[1-(1-\varepsilon)^{1/3}]^2} - 2\right] \tan h \; (\xi/\varepsilon^m)}{\frac{\xi/\varepsilon^m}{1-(1-\varepsilon)^{1/2}} - \tan h \; (\xi/\varepsilon^m)} \\ & \text{where} \\ \xi &= \left[\frac{1}{(1-\varepsilon)^{1/3}} - 1\right] \frac{\alpha}{2} N_{Se}^{1/3} N_{Re}^{1/2} \\ & \text{This simplifies to:} \\ N_{Sh} &= \frac{\varepsilon^{1-2m}}{(1-\varepsilon)^{1/3}} \left[\frac{1}{(1-\varepsilon)^{1/3}} - 1\right] \frac{\alpha^2}{2} N_{Re} N_{Se}^{2/3} (N_{Re} < 0.1) \end{split}$	[S] Modification of theory to fit experimental data. For spheres, $m = 1$, $N_{Re} > 2$. $N_{Sh} = \frac{k'_L d_p}{D}$, $N_{Re} = \frac{V_{super} d_p \xi}{\mu}$ $m = 1$ for $N_{Re} > 2$; $m = 0.5$ for $N_{Re} < 1.0$; $\varepsilon =$ voidage; $\alpha = \text{const.}$ Best fit data is $\alpha = 0.7$. Comparison of theory and experimental ion exchange results in Ref. 92.	[92] [106] [125]
U. Liquid fluidized beds	$\begin{split} N_{Sh} &= 0.250 N_{Re}^{0.023} N_{Ga}^{0.003} \left(\frac{\rho_{*} - \rho}{\rho} \right)^{0.282} N_{Sc}^{0.410} \qquad (\epsilon < 0.85) \\ N_{Sh} &= 0.304 N_{Re}^{-0.057} N_{Ga}^{0.232} \left(\frac{\rho_{*} - \rho}{\rho} \right)^{0.297} N_{Sc}^{0.404} \qquad (\epsilon > 0.85) \\ \text{This can be simplified (with slight loss in accuracy at high ϵ) to} \\ N_{Sh} &= 0.245 N_{Ga}^{0.223} \left(\frac{\rho_{*} - \rho}{\rho} \right)^{0.300} N_{Sc}^{0.400} \end{split}$	$\begin{split} & [E] \text{ Correlate amount of data from literature.} \\ & \text{Predicts very little dependence of } N_{Sh} \text{ on } \\ & \text{velocity. Compare large number of published } \\ & \text{correlations.} \end{split} \\ & N_{Sh} = \frac{k'_L d_p}{D}, N_{Re} = \frac{d_p \rho v_{\text{super}}}{\mu}, N_{Ge} = \frac{d_p^3 \rho^2 g}{\mu^2}, \\ & N_{Se} = \frac{\mu}{\rho D} \\ & 1.6 < N_{Re} < 1320, 2470 < N_{Ce} < 4.42 \times 10^6 \\ & 0.27 < \frac{\rho_s - \rho}{\rho} < 1.114, 305 < N_{Se} < 1595 \end{split}$	[151]
V. Liquid film flowing over solid particles with air present, trickle bed reactors, fixed bed	$\begin{split} N_{Sh} &= \frac{k_L}{aD} = 1.8 N_{Re}^{1/2} N_{Se}^{1/3}, \ 0.013 < N_{Re} < 12.6 \\ \text{two-phases, liquid trickle, no forced flow of gas.} \\ N_{Sh} &= 0.8 N_{Re}^{1/2} N_{Se}^{1/3}, \text{ one-phase, liquid only.} \end{split}$	[E] $N_{Re} = \frac{L}{a\mu}$, irregular granules of benzoic acid, $0.29 \le d_p \le 1.45$ cm. L = superficial liquid flow rate, kg/m ² s. a = surface area/col. volume, m ² /m ³ .	[130]
W. Supercritical fluids in packed bed	$\begin{aligned} \frac{N_{5h}}{(N_{5c}N_{Gr})^{1/4}} &= 0.5265 \left(\frac{(N_{hc}^{1/2}N_{5c}^{1/3})}{(N_{5c}N_{Gr})^{1/4}}\right)^{1.6808} \\ &+ 2.48 \left(\frac{N_{hc}^2N_{5c}^{1/3}}{N_{Gr}}\right)^{0.6439} - 0.8768 \left ^{1.553}\right. \end{aligned}$	[E] Natural and forced convection. $0.3 < N_{Be} < 135$.	[99]
X. Cocurrent gas-liquid flow in fixed beds	Downflow in trickle bed and upflow in bubble columns.	Literature review and meta-analysis. Analyzed both downflow and upflow. Recommendations for best mass- and heat-transfer correlations (see ref- erence).	[95]
Y. Liquid-solid transfer. Electrochemical reaction. Lessing rings. Transfer from liquid to solid	$\begin{split} & \text{Liquid only:} \\ & N_{Sh} = kd/D = 1.57N_{Sc}^{1/3}N_{Re}^{0.46} \\ & 1390 < N_{Sc} < 4760, 166 < N_{Re} < 722 \\ & \text{Cocurrent two-phase} (\text{liquid and gas}) \text{ in packed bubble} \\ & \text{column:} \\ & N_{Sh} = 1.93N_{Sc}^{1/3}N_{Re}^{0.34}N_{Re,Ss}^{0.11} \\ & 60 < N_{Re,gas} < 818, 144 < N_{Re} < 748 \end{split}$	[E] Electrochemical reactors only. d = Lessing ring diameter, $1 < d < 1.4 \text{ cm}, N_{Re} = \rho v_{\text{super}} d/\mu,$ Deviation $\pm 7\%$ for both cases. $N_{Re,\text{gas}} = \rho_{\text{gas}} V_{\text{supergas}} d/\mu_{\text{gas}}$ Presence of gas enhances mass transfer.	[75]

NOTE: For $N_{Re} < 3$ convective contributions which are not included may become important. Use with logarithmic concentration difference (integrated form) or with arithmetic concentration difference (differential form). *See the beginning of the "Mass Transfer" subsection for references.

5-80 HEAT AND MASS TRANSFER

Situation	Correlations	$\begin{array}{c} Comments\\ E=Empirical, \ S=Semiempirical, \ T=Theoretical \end{array}$	References*
A. Absorption, counter-current, liquid-phase coefficient H _L , Sherwood and Holloway correlation for random packings	$ \begin{array}{c} H_L = a_L \!\! \left(\frac{L}{\mu_L} \right)^n \! N_{S,CL}^{0.5}, L = \text{lb/hr ft}^2 \\ \hline \\ $	[E] From experiments on desorption of sparingly soluble gases from water. Graphs [Ref. 138], p. 606. Equation is dimensional. A typical value of <i>n</i> is 0.3 [Ref. 66] has constants in kg, m, and s units for use in 5-24-A and B with k_C in kgmole/s m ² and \hat{k}_L in kgmole/s m ² (kgmol/m ²). Constants for other packings are given by Refs. 104, p. 187 and 152, p. 239. $H_L = \frac{L_M}{\hat{k}_L a}$ $L_M = \text{lbmol/hr ft}^2, \hat{k}_L = \text{lbmol/hr ft}^2, a = \text{ft}^2/\text{ft}^3, \mu_L$ in lb/(l/r ft). Range for 5-24-A is 400 < L < 15,000 lb/hr ft ²	[104] p. 187 [105] [138] p. 606 [157] [156]
B. Absorption counter-current, gas- phase coefficient H_G , for random packing	$H_G = rac{G_M}{\hat{k}_G a} = rac{a_G(G)^b N_{Sc,v}^{0.5}}{(L)^c}$	[E] Based on ammonia-water-air data in Fellinger's 1941 MIT thesis. Curves: Refs. 104, p. 186 and 138, p. 607. Constants given in 5-24- A. The equation is dimensional. $G = \text{lb/hr ft}^2$, $G_M = \text{lbmol/hr ft}^2$, $\hat{k}_G = \text{lbmol/hr ft}^2$.	[104] p. 189 [138] p. 607 [157]
C. Absorption and and distillation, counter-current, gas and liquid individual coefficients and wetted surface area, Onda et al. correla- tion for random packings	$\begin{aligned} & \frac{k_G^2 RT}{a_p D_G} = A \left(\frac{G}{a_p \mu_G}\right)^{0.7} N_{\text{Sc.G}}^{1/3} (a_p d'_p)^{-2.0} \\ & k_L' \left(\frac{\rho_L}{\mu_L g}\right)^{1/3} = 0.0051 \left(\frac{L}{a_w \mu_L}\right)^{2/3} N_{\text{Sc.L}}^{-1/2} (a_p d'_p)^{0.4} \\ & k_L' = \text{lbmol/rr} \text{ ft}^2 (\text{lbmol/ft}^3) [\text{kgmol/s m}^2 \\ & (\text{kgmol/m}^3)] \end{aligned}$	[E] Gas absorption and desorption from water and organics plus vaporization of pure liquids for Raschig rings, saddles, spheres, and rods. d'_p = nominal packing size, a_p = dry packing surface area/volume, a_w = wetted packing surface area/volume. Equations are dimensionally con- sistent, so any set of consistent units can be used. σ = surface tension, dynes/cm. $A = 5.23$ for packing $\geq 1/2$ inch (0.012 m) $A = 2.0$ for packing $\geq 1/2$ inch (0.012 m) k'_G = lbmol/hr ft ² atm [kg mol/s m ² (N/m ²)] Critical surface tensions, σ_C = 61 (ceramic), 75 (steel), 33 (polyethylene), 40 (PVC), 56 (carbon) dynes/cm. $4 < \frac{L}{a_w \mu_L} < 400$ $5 < \frac{G}{a_p \mu_G} < 1000$ Most data ± 20% of correlation, some ± 50%. Graphical comparison with data in Ref. 109.	[44] [90] p. 380 [109][149] p. 355 [156]
D. Distillation and absorption, counter-current, random packings, modification of Onda correlation, Bravo and Fair correlation to determine interfacial area	Use Onda's correlations (5-24-C) for k'_{G} and k'_{L} . Calculate: $H_{G} = \frac{G}{k'_{G}a_{e}PM_{G}}, H_{L} = \frac{L}{k'_{L}a_{e}\rho_{L}}, H_{OG} = H_{G} + \lambda H_{L}$ $\lambda = \frac{m}{L_{M}/G_{M}}$ $a_{e} = 0.498a_{p} \left(\frac{\sigma^{0.5}}{Z^{0.4}}\right) (N_{Ca,L}N_{Re,G})^{0.392}$ $N_{Re,G} = \frac{6G}{a_{p}\mu_{G}}, N_{Ca,L} = \frac{L\mu_{L}}{\rho_{L}\sigma g_{c}}$ (dimensionless)	[E] Use Bolles & Fair (Ref. 43) database to determine new effective area a_e to use with Onda et al. (Ref. 109) correlation. Same definitions as 5-24-C. P = total pressure, atm; M_C = gas, molec- ular weight; m = local slope of equilibrium curve; L_M/G_M = slope operating line; Z = height of pack- ing in feet. Equation for a_e is dimensional. Fit to data for effective area quite good for distillation. Good for absorption at low values of $(N_{ca,L} \times N_{Re,G})$, but correlation is too high at higher values of $(N_{Ca,L} \times N_{Re,G})$.	[44]

TABLE 5-24 Mass-Transfer Correlations for Packed Two-Phase Contactors—Absorption, Distillation, Cooling Towers, and Extractors (Packing Is Inert)

TABLE 5-24 Mass-Transfer Correlations for Packed Two-Phase Contactors—Absorption, Distillation, Cooling Towers, and Extractors (Packing Is Inert) (Continued)

Situation	Correlations	Comments E = Empirical, S = Semiempirical, T = Theoretical	References
E. Absorption and distillation, countercurrent gas-liquid flow, random and structured packing. Determine H_L and H_G	$\begin{split} H_G = & \left(\begin{array}{c} 0.226 \\ f_p \end{array} \right) \left(\begin{array}{c} \frac{N_{sc}}{0.660} \end{array} \right)^b \left(\begin{array}{c} G_x \\ \overline{6.782} \end{array} \right)^{-0.5} \left(\begin{array}{c} G_y \\ \overline{0.678} \end{array} \right)^{0.35} \\ H_L = & \left(\begin{array}{c} 0.357 \\ f_p \end{array} \right) \left(\begin{array}{c} N_{sc} \\ \overline{372} \end{array} \right)^{0.5} \left(\begin{array}{c} G_x/\mu \\ \overline{6.782/0.0008937} \end{array} \right)^{0.3} \\ \hline \end{array} \\ \hline \\$	[S] H_G based on NH ₃ absorption data (5–28B) for which H_G , _{law} = 0.226 m with $N_{Sc, law}$ = 0.660 at $G_{x, base}$ = 6.782 kg/(sm ²) and $G_{y, base}$ = 0.678 kg/(sm ²) with 1½ in, ceramic Raschig rings. The exponent <i>b</i> on N_{Sc} is reported as either 0.5 or as $\frac{2}{3}$. $f_p = H_G$ for NH ₃ with 1½ Raschig rings H_L based on O ₂ desorption data (5-24-A). Base viscosity, μ_{base} = 0.0008937 kg/(ms). H_L in m. $G_y < 0.949$ kg/(sm ²), 0.678 < $G_x < 6.782$ kg/(sm ²). Best use is for absorption and stripping. Limited use for organic distillation [156].	[66] p. 686, 659 [138] [156]
F. Absorption, cocurrent downward flow, random packings, Reiss correlation	$\begin{split} &\text{Air-oxygen-water results correlated by } k'_L a = \\ &0.12 E_L^{15}. \text{ Extended to other systems.} \\ &k'_L a = 0.12 E_L^{0.5} \bigg(\frac{D_L}{2.4 \times 10^5} \bigg)^{0.5} \\ &E_L = \bigg(\frac{\Delta p}{\Delta L} \bigg)_{2\text{-phase}} v_L \\ &\frac{\Delta p}{\Delta L} = \text{pressure loss in two-phase flow} = \text{lbf/ft}^2 \text{ ft} \end{split}$	[E] Based on oxygen transfer from water to air 77°F. Liquid film resistance controls. ($D_{water} @$ 77°F = 2.4 × 10 ⁻⁵). Equation is dimensional. Data was for thin-walled polyethylene Raschig rings. Correlation also fit data for spheres. Fit ±25%. See [122] for graph. $k'_{La} = s^{-1}$ $D_L = cm/s$ $E_L = ft$, lbf/s ft ³ v_L = superficial liquid velocity, ft/s	[122] [130] p. 217
	$\begin{split} k'_G a &= 2.0 + 0.91 E_G^{2/3} \text{ for } \text{NH}_3 \\ E_\text{g} &= \left(\frac{\Delta p}{\Delta L}\right)_{2\text{-phase}} v_\text{g} \\ v_\text{g} &= \text{superficial gas velocity, ft/s} \end{split}$	[E] Ammonia absorption into water from air at 70°F. Gas-film resistance controls. Thin-walled polyethylene Raschig rings and 1-inch Intalox saddles. Fit ±25%. See [122] for fit. Terms defined as above.	[122]
G. Absorption, stripping, distillation, counter-current, H_L , and H_G , random packings, Bolles and Fair correlation	For Raschig rings, Berl saddles, and spiral tile: $H_{L} = \frac{\phi C_{\text{flood}}}{3.28} N_{\text{ScL}}^{0.5} \left(\frac{Z}{3.05}\right)^{0.15}$ $C_{\text{flood}} = 1.0 \text{ if below 40\% flood}\text{otherwise, use figure in [54] and [157].}$ $H_{G} = \frac{A\psi(d'_{\text{col}})^{m} Z^{0.33} N_{\text{Sc.G}}^{0.5}}{\left[L\left(\frac{\mu_{L}}{\mu_{\text{water}}}\right)^{0.6} \left(\frac{\rho_{\text{water}}}{\rho_{L}}\right)^{1.25} \left(\frac{\sigma_{\text{water}}}{\sigma_{L}}\right)^{0.5}\right]^{n}}$ Figures for ϕ and ψ in [42 and 43] Ranges: 0.02 < ϕ > 0.300; 25 < ψ < 190 m.	[E] Z = packed height, m of each section with its own liquid distribution. The original work is reported in English units. Cornell et al. (Ref. 54) review early literature. Improved fit of Cornell's ϕ values given by Bolles and Fair (Refs. [42], [43]) and [157]. A = 0.017 (rings) or 0.029 (saddles) $d'_{col} = column diameter in m (if diameter > 0.6 m,use d'_{col} = 0.6)m = 1.24$ (rings) or 1.11 (saddles) n = 0.6 (rings) or 0.5 (saddles) $L = liquid rate, kg/(sm2), \mu_{water} = 1.0 Pa\cdots, \rho_{water} = 1000 kg/m3, \sigma_{water} = 72.8 mN/m (72.8 dyn/cm).$ H_G and H_L will vary from location to location. Design each section of packing separately.	[42, 43, 54] [77] p. 428 [90] p. 381 [141] p. 353 [157] [156]
H. Distillation and absorption. Counter-current flow. Structured packings. Gauze-type with triangular flow channels, Bravo, Rocha, and Fair correlation	Equivalent channel: $d_{eq} = Bh \left[\frac{1}{B + 2S} + \frac{1}{2S} \right]$ Use modified correlation for wetted wall column (See 5-18-F) $N_{Sh,e} = \frac{k'_{ed}d_{eq}}{D_{e}} = 0.0338N^{0.8}_{Re,e}N^{0.333}_{Se,e}$ $N_{Re,e} = \frac{d_{eq}\rho_{e}(U_{e,eff} + U_{L,eff})}{\mu_{e}}$ Calculate k'_{L} from penetration model (use time for liquid to flow distance s). $k'_{L} = 2(D_{L}U_{L,eff}/\pi S)^{1/2}$.	[T] Check of 132 data points showed average deviation 14.6% from theory. Johnstone and Pig- ford [Ref. 84] correlation (5-18-F) has exponent on N_{Re} rounded to 0.8. Assume gauze packing is completely wet. Thus, $a_{eff} = a_p$ to calculate H_C and H_L . Same approach may be used generally applicable to sheet-metal packings, but they will not be completely wet and need to esti- mate transfer area. $L = \text{liquid flux}, \text{kg/s m}^2, G = \text{vapor flux}, \text{kg/s m}^2.$ Fit to data shown in Ref. [45]. $H_C = \frac{G}{k'_c a_p \rho_c}, H_L = \frac{L}{k'_L a_p \rho_L}$ effective velocities $U_{c,\text{eff}} = \frac{U_{c,\text{supper}}}{\epsilon \sin \theta}, U_{L,\text{eff}} = \frac{3\Gamma}{2\rho_L} \left(\frac{\rho_L^2 g}{3\mu_L \Gamma}\right)^{0.333}, \Gamma = \frac{L}{\text{Per}}$ $\text{Per} = \frac{\text{Perimeter}}{\text{Area}} = \frac{4S + 2B}{Bh}$	[45] [63] p. 310, 326 [149] p. 356 362 [156]

5-82 HEAT AND MASS TRANSFER

Situation	Correlations	Comments E = Empirical, S = Semiempirical, T = Theoretical	Beferences*
I. Distillation and absorption, counter- current flow. Structured packing with corrugations. Rocha, Bravo, and Fair correlation.	$\begin{split} & \text{Correlations} \\ \hline & \text{Resc} = \frac{k_{g}S}{D_{g}} = 0.054 N_{\text{Re}}^{0.8} N_{\text{Sc}}^{0.33} \\ & u_{\text{c,eff}} = \frac{u_{\text{g,super}}}{\epsilon(1-h_{L})\text{sin }\theta}, u_{L,\text{eff}} = \frac{u_{\text{liq,super}}}{\epsilon h_{L} \sin \theta}, \\ & k_{L} = 2 \Big(\frac{D_{L}C_{E} u_{L,\text{eff}}}{\pi S} \Big) \\ & H_{\text{OG}} = H_{G} + \lambda H_{L} = \frac{u_{\text{g,super}}}{k_{g} a_{e}} + \frac{\lambda u_{L,\text{super}}}{k_{L} a_{e}} \\ & \text{Interfacial area:} \\ & \frac{a_{e}}{a_{p}} = F_{\text{SE}} \frac{29.12 (\text{N}_{We} \text{N}_{Fr})^{0.15} \text{S}^{0.359}}{N_{\text{Re},L}^{0.2} \epsilon^{0.6} (1-0.93 \cos \gamma)(\sin \theta)^{0.3}} \\ & \text{Packing factors:} \\ & \frac{a_{p}}{1 \text{ red} 2233} 0.95 0.350 45^{\circ}}{\text{Intalox 2T} 213} 0.95 0.415 45^{\circ}} \\ & \text{Mellapak 350Y} 350 0.93 0.350 45^{\circ} \end{split}$	[E, T] Modification of Bravo, Rocha, and Fair (5-24-H). Same definitions as in (5-24-H) unless defined differently here. Recommended [156]. h_L = fractional hold-up of liquid C_E = factor for slow surface renewal $C_E \sim 0.9$ a_e = effective area/volume (1/m) a_p = packing surface area/volume (1/m) F_{SE} = surface enhancement factor γ = contact angle; for sheet metal, cos γ = 0.9 for $\sigma < 0.055$ N/m $\cos \gamma = 5.211 \times 10^{-16.8336}$, $\sigma > 0.055$ N/m $\lambda = \frac{m}{L/V}$, $m = \frac{dy}{dx}$ from equilibrium	[124], [156]
J. Rotating packed bed (Higee)	$\begin{aligned} \frac{k_{t}ad_{p}}{Da_{p}} \left(1 - 0.93 \ \frac{V_{o}}{V_{t}} - 1.13 \ \frac{V_{i}}{V_{t}}\right) &= 0.65 \ N_{Sc}^{0.5} \\ &\times \left(\frac{L}{a_{p}\mu}\right)^{0.17} \left(\frac{d_{p}^{3}\rho^{2}a_{c}}{\mu^{2}}\right)^{0.3} \left(\frac{L^{2}}{\rho a_{p}\sigma}\right)^{0.3} \\ &500 \le N_{Sc} \le 1.2 \ E5; \ 0.0023 \le L/(a_{p}\mu) \le 8.7 \\ &120 \le (d_{p}^{3}\rho^{2}a_{c})/\mu^{2} \le 7.0 \ E7; \ 3.7 \ E - 6 \le L^{2}/(\rho a_{p}\sigma) \le \\ &9.4 \ E - 4 \\ &9.12 \le \frac{k_{L}a}{Da_{p}} \le 2540 \end{aligned}$	[E] Studied oxygen desorption from water into N ₂ . Packing 0.22-mm-diameter stainless-steel mesh. $\varepsilon = 0.954$, $a_p = 829$ (1/m), $h_{bed} = 2$ cm. a = gas-liquid area/vol (1/m) $L = \text{liquid mass flux, kg/(m^2S)}$ $a_c = \text{centrifugal accel, m^2/S}$ $V_h, V_o, V_l = volumes inside inner radius, between outer radius and housing, and total, respectively, m3. Coefficient (0.3) on centrifugal acceleration agrees with literature values (0.3–0.38).$	[50]
K. High-voidage packings, cooling towers, splash-grid packings	$\frac{(Ka)_{\rm H}V_{\rm tower}}{L} = 0.07 + A'N' \left(\frac{L}{G_a}\right)^{-n'}$ $A' \text{ and } n' \text{ depend on deck type (Ref. 86), } 0.060 \le A' \le 0.135, 0.46 \le n' \le 0.62.$ General form fits the graphical comparisons (Ref. 138).	$ \begin{array}{l} [E] \mbox{ General form. } G_a = \mbox{ Ib dry air/hr ft}^2. \\ L = \mbox{ Ib/h ft}^2, N' = \mbox{ number of deck levels.} \\ (Ka)_H = \mbox{ overall enthalpy transfer coefficient} = \\ \mbox{ Ib/(h)(ft}^3) \left(\frac{\mbox{ Ib water}}{\mbox{ Ib dry air}} \right) \\ V_{\mbox{ tower}} = \mbox{ tower volume, ft}^3/\mbox{ ft}^2. \\ \mbox{ If normal packings are used, use absorption mass-transfer correlations.} \end{array} $	[86][104] p. 220 [138] p. 286
L. Liquid-liquid extraction, packed towers	Use k values for drops (Table 5-21). Enhancement due to packing is at most 20%.	[E] Packing decreases drop size and increases interfacial area.	[146] p. 79
M.Liquid-liquid extraction in rotating-disc contactor (RDC)	$\begin{aligned} & \frac{k_{c\text{-RDC}}}{k_c} = 1.0 + 2.44 \left(\frac{N}{N_{Cr}}\right)^{2.5} \\ & N_{Cr} = 7.6 \times 10^{-4} \left(\frac{\sigma}{d_{\text{drop}} \mu_c}\right) \left(\frac{H}{D_{\text{tank}}}\right) \\ & \frac{k_{d\text{-RDC}}}{k_d} = 1.0 + 1.825 \left(\frac{N}{N_{Cr}}\right) \frac{H}{D_{\text{tank}}} \end{aligned}$	k_c, k_d are for drops (Table 5-21) Breakage occurs when $N > N_{Cr}$. Maximum enhancement before breakage was factor of 2.0. N = impeller speed $H = $ compartment height, $D_{tank} = $ tank diameter, $\sigma = $ interfacial tension, N/m. Done in 0.152 and 0.600 m RDC.	[36][146] p. 79
N. Liquid-liquid extraction, stirred tanks	See Table 5-22-E, F, G, and H.	[E]	

TABLE 5-24 Mass-Transfer Correlations for Packed Two-Phase Contactors—Absorption, Distillation, Cooling Towers, and Extractors (Packing Is Inert) (Concluded)

See also Sec. 14. *See the beginning of the "Mass Transfer" subsection for references.